We have fabricated a trial product of an oxide thermoelectric module using the perovskite cobalt oxides. The thermoelectric properties of the p- and n-leg materials are carefully controlled, and the room temperature thermopower is set to be larger than 200 μV/K. This module generates an open circuit voltage of 1.0 V with a small temperature difference of 170 K. At a large temperature difference of 399 K, it generates a substantial power of 40 mW, and the generated energy density is comparable with that of commercial solar cells.
The effect of a magnetic field component parallel to the superconducting layers on longitudinal Josephson plasma oscillations in the layered high temperature superconductor Bi2Sr2CaCu2O 8+δ is shown to depend on the thermodynamic state of the underlying vortex lattice. Whereas the parallel magnetic field component depresses the Josephson Plasma Resonance (JPR) frequency in the vortex solid phase, it may enhance it in the vortex liquid. There is a close correlation between the behavior of microwave absorption near the JPR frequency and the effectiveness of pancake vortex pinning, with the enhancement of the plasma resonance frequency occurring in the absence of pinning, at high temperature close to the vortex melting line. An interpretation is proposed in terms of the attraction between pancake vortices and Josephson vortices, apparently also present in the vortex liquid state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.