We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad Hβ emission line for a total of 44 quasars, and for the broad Hα emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 Hβ and 13 Hα lags with JAVELIN, 42 Hβ and 17 Hα lags with CREAM, and 16 Hβ and eight Hα lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our Hβ-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the Hα emission is consistent with or slightly longer than that of Hβ. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local M BH -* s relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z<0.3).
We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1 < z < 4.5 and is flux-limited to i PSF < 21.7 without any other cuts on quasar properties. The main sample characterization includes: 1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014; 2) identification of broad and narrow absorption lines in the spectra; 3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars, and demonstrate the effects of signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties, and shows well detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.
We present reverberation-mapping lags and black-hole mass measurements using the C ivλ1549 broad emission line from a sample of 349 quasars monitored as a part of the Sloan Digital Sky Survey Reverberation Mapping Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days. We report significant time delays between the continuum and the C ivλ1549 emission line in 52 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of ∼100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black-hole masses and fit an updated C iv radius-luminosity relationship. Our results significantly increase the sample of quasars with C iv RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the C iv radius-luminosity relation. In addition, these quasars are located at among the highest redshifts (z ≈ 1.4-2.8) of quasars with black hole masses measured with reverberation mapping. This work constitutes the first large sample of C iv reverberation-mapping measurements in more than a dozen quasars, demonstrating the utility of multi-object reverberation mapping campaigns.
We present accretion-disk structure measurements from continuum lags in the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Lags are measured using the JAVELIN software from the first-year SDSS-RM g and i photometry, resulting in well-defined lags for 95 quasars, 33 of which have lag SNR > 2σ. We also estimate lags using the ICCF software and find consistent results, though with larger uncertainties. Accretion-disk structure is fit using a Markov Chain Monte Carlo approach, parameterizing the measured continuum lags as a function of disk size normalization, wavelength, black hole mass, and luminosity. In contrast with previous observations, our best-fit disk sizes and color profiles are consistent with the Shakura & Sunyaev (1973) analytic solution. We also find that more massive quasars have larger accretion disks, similarly consistent with the analytic accretion-disk model. The continuum lag fits have a large excess dispersion, indicating that our measured lag errors are underestimated and/or our best-fit model may be missing the effects of orientation, spin, and/or radiative efficiency. We demonstrate that fitting disk parameters using only the highest-SNR lag measurements biases best-fit disk sizes to be larger than the disk sizes recovered using a Bayesian approach on the full sample of well-defined lags. This work represents a significant advance in continuum reverberation mapping, providing a large number of accretion-disk size and structure measurements for quasars spanning a broad range of redshift, mass and luminosity.
We present reverberation mapping results for the Mg ii λ2800 Å broad emission line in a sample of 193 quasars at 0.35 < z < 1.7 with photometric and spectroscopic monitoring observations from the Sloan Digital Sky Survey Reverberation Mapping project during 2014–2017. We find significant time lags between the Mg ii and continuum lightcurves for 57 quasars, and define a “gold sample” of 24 quasars with the most reliable lag measurements. We estimate false-positive rates for each lag that range from 1% to 24%, with an average false-positive rate of 11% for the full sample and 8% for the gold sample. There are an additional ∼40 quasars with marginal Mg ii lag detections, which may yield reliable lags after additional years of monitoring. The Mg ii lags follow a radius–luminosity relation with a best-fit slope that is consistent with α = 0.5 , but with an intrinsic scatter of 0.36 dex that is significantly larger than found for the Hβ radius–luminosity relation. For targets with SDSS-RM lag measurements of other emission lines, we find that our Mg ii lags are similar to the Hβ lags and ∼2–3 times larger than the C iv lags. This work significantly increases the number of Mg ii broad-line lags and provides additional reverberation-mapped black hole masses, filling the redshift gap at the peak of supermassive black hole growth between the Hβ and C iv emission lines in optical spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.