BackgroundAlzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by an abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and impaired neurogenesis. Urolithin A (UA), a gut-microbial metabolite of ellagic acid, has been reported to exert anti-inflammatory effects in the brain. However, it is unknown whether UA exerts its properties of anti-inflammation and neuronal protection in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD.MethodsMorris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia, Aβ deposition, and neurogenesis. The expression of inflammatory mediators were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The modulating effects of UA on cell signaling pathways were assayed by Western blotting.ResultsWe demonstrated that UA ameliorated cognitive impairment, prevented neuronal apoptosis, and enhanced neurogenesis in APP/PS1 mice. Furthermore, UA attenuated Aβ deposition and peri-plaque microgliosis and astrocytosis in the cortex and hippocampus. We also found that UA affected critical cell signaling pathways, specifically by enhancing cerebral AMPK activation, decreasing the activation of P65NF-κB and P38MAPK, and suppressing Bace1 and APP degradation.ConclusionsOur results indicated that UA imparted cognitive protection by protecting neurons from death and triggering neurogenesis via anti-inflammatory signaling in APP/PS1 mice, suggesting that UA might be a promising therapeutic drug to treat AD.
SummaryAlthough valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.