Microbial lipid metabolism is an attractive route for producing aliphatic chemicals, commonly referred to as oleochemicals. The predominant metabolic engineering strategy centers on heterologous thioesterases capable of producing fatty acids of desired size. To convert acids to desired oleochemicals (e.g. fatty alcohols, ketones), metabolic engineers modify cells to block beta-oxidation, reactivate fatty acids as coenzyme-A thioesters, and redirect flux towards termination enzymes with broad substrate utilization ability. These genetic modifications narrow the substrate pool available for the termination enzyme but cost one ATP per reactivation - an expense that could be saved if the acyl-chain was directly transferred from ACP- to CoA-thioester. In this work, we demonstrate an alternative acyl-transferase strategy for producing medium-chain oleochemicals. Through bioprospecting, mutagenesis, and metabolic engineering, we developed strains of Escherichia coli capable of producing over 1 g/L of medium-chain free fatty acids, fatty alcohols, and methyl ketones using the transacylase strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.