After the sensational rediscovery of living exemplars of the Cretaceous relict Metasequoia glyptostroboides—a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from M. glyptostroboides during the entire period in which the tree has been investigated (1954–2014) with main focus on the compounds specific to this plant source. Studies on the biological activity of pure compounds and extracts derived from M. glyptostroboides are reviewed for the first time. The unique potential of M. glyptostroboides as a source of bioactive constituents is founded on the fact that the tree seems to have survived unchanged since the Cretaceous era. Since then, its molecular defense system has resisted the attacks of millions of generations of pathogens. In line with this, some recent landmarks in Metasequoia paleobotany are covered. Initial spectral analysis of recently discovered intact 53 million year old wood and amber of Metasequoia strongly indicate that the tree has remained unchanged for millions of years at the molecular level.
Environmental contaminants, including poly-chlorinated biphenyls (PCBs), are enriched in coastal sediments, and despite a 1977 moratorium by the United States Environmental Protection Agency on the production of PCBs, levels remain high, more so near former industrial plants. The effects of these contaminants on sessile species in the intertidal zone, particularly nonanimal species such as the ubiquitous fucoid brown algae, are not well known. We investigated the developmental effects of chronic PCB treatment beginning at fertilization on two species of marine rockweed, Fucus vesiculosus Linnaeus and Silvetia compressa (J.Agardh) E.Serrão, T.O.Cho, S.M.Boo & Brawley. A mixture of the most widely used PCB congeners, Aroclors 1221, 1242, and 1254, was delivered at concentrations well below levels found in contaminated sediments, and resulted in severely delayed mitosis and cytokinesis in both species. In F. vesiculosus, this delay was accompanied by abnormal spindle morphology. PCB treatment also dramatically slowed or arrested rhizoid growth after 2-4 d, and by 7 d F. vesiculosus embryos were dead; in contrast, polar secretion of adhesive, germination, and photopolar germination were not affected. The dramatic delay in the first cell division and reduction in tip growth within the first week of development are likely to compromise S. compressa's ability to reproduce and establish new generations. Thus, the data presented here suggest that PCBs still present in coastal sediments may be inhibiting recruitment in these species. Moreover, as sediment dredging causes temporary spikes in PCB concentrations, these kinds of bioremediation steps may exacerbate the disruption of fucoid development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.