Brain-computer interface (BCI) is an emerging area of research that establishes a connection between the brain and external devices in a completely new way. It provides a new idea about the rehabilitation of brain diseases, human-computer interaction and augmented reality. One of the main problems of implementing BCI is to recognize and classify the motor imagery Electroencephalography(EEG) signals effectively. This paper takes the motor imagery feature data of EEG as the research object to conduct the research of multi-classification method. In this study, we use the Emotiv helmet with 16 biomedical sensors to obtain EEG signal, adopt the fast independent component analysis and the fast Fourier transform to realize signal preprocessing and select the common spatial pattern algorithm to extract the features of the motor imagery EEG signal. In order to improve the accuracy of recognition of EEG signal, a new deep learning network is designed for multi-channel self-acquired EEG data set which is named as min-VGG-LSTMnet in this paper. The network combines Long Short-Term Memory Network with convolutional neural network VGG and achieves the four-class task of the left-hand, right-hand, left-foot and right-foot lifting movements based on motor imagery. The results show that the accuracy of the proposed classification method is at least 8.18% higher than other mainstream deep learning methods.
Brain-computer interface (BCI) is an emerging area of research that establishes a connection between the brain and external devices in a completely new way. It provides a new idea about the rehabilitation of brain diseases, human-computer interaction and augmented reality. One of the main problems of implementing BCI is to recognize and classify the motor imagery Electroencephalography(EEG) signals effectively. This paper takes the characteristic data of motor imagery of EEG as the research object to conduct the research of multi-classification method. In this study, we use the Emotiv helmet with 16 biomedical sensors to obtain EEG signal, adopt the fast independent component analysis and the fast Fourier transform to realize signal preprocessing and select the common spatial pattern algorithm to extract the features of the motor imagery EEG signal. In order to improve the accuracy of recognition of EEG signal, a new deep learning network is designed for multi-channel self-acquired EEG data set which is named as min-VGG-LSTMnet in this paper. This network combines Long Short-Term Memory Network with convolutional neural network VGG and achieves the four-classification task of the left-hand, right-hand, left-foot and right-foot lifting movements based on motor imagery. The results show that the accuracy of the proposed classification method is at least 8.18% higher than other mainstream deep-learning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.