This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.
The human health risk (HHR) assessment to dense non-aqueous phase liquids (DNAPLs) exposure has become an important part of groundwater environment management. Usually, DNAPL transport models are applied to simulate the concentration distribution of contaminant for HHR assessment. The present paper studied the influences of model uncertainties on the HHR assessment, and the metric of Incremental Lifetime Cancer Risk (ILCR) was used to quantify HHR. The impacts of permeability's heterogeneity and the structure of DNAPL transport model (e.g., the constitutive model) on HHR assessment were evaluated based on a synthetical DNAPL transport model. The results demonstrate that, compared with the low heterogeneity, the high heterogeneity leads to lower average ILCR value at the control planes near the source zone, and higher average ILCR value at the control planes far away from the source zone. In addition, the HHR assessments would be inconsistent for the two constitutive models, i.e., Stone-Parker (S-P) and Corey-van Genuchten (C-v) models. Compared with the HHR assessment depending on C-v model, the mean of ILCR's probability distribution produced by S-P model is larger at the control planes near the source zone, and smaller at the control planes far away from the source zone. Moreover, based on a sandbox experiment, the impact of parameter uncertainty of DNAPL transport model on HHR assessment was evaluated by Markov chain Monte Carlo (MCMC) simulation. The results show that it is infeasible and risky to assess HHR by the specific parameters of contaminant transport model and ignoring parameter uncertainty. The HHR assessment by incorporating Bayesian uncertainty analysis could provide more flexible information. In addition, the sparse grid (SG) surrogate is an effective way to reduce computation burden caused by the larger number of model executions in the MCMC based HHR assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.