Background: Exosomes play crucial roles in regulating the crosstalk between normal and cancer cells in the tumor microenvironment, and in regulating cancer proliferation, migration and invasion through their cargo molecules. Methods: We analyzed the pro-invasiveness of exosomal circRNA-100,338 in HCC using the transwell invasion assay. The co-culture of human umbilical vein endothelial cells (HUVEC) and exosomes derived from HCC cell lines were used to evaluate the impact of HCC derived exosomes on HUVEC. Nude mice models were used to validate the findings in vitro. Clinically, quantitative RT-PCR was used to quantify the expression of serum exosomal circRNA-100,338 in HCC patients at both pre-surgery within one week and post-surgery within three weeks. Results: We aim to investigate the pro-invasive role of exosomal circRNA-100,338 in HCC metastasis. We for the first time demonstrated that circRNA-100,338 was highly expressed in both highly metastatic HCC cells and their secreted exosomes. The transwell invasion assay showed that the overexpression or knockdown of exosomal circRNA-100,338 significantly enhanced or reduced the invasive abilities of HCC cells. Subsequently, in vitro and in vivo assays showed that exosomal circRNA-100,338 affected the cell proliferation, angiogenesis, permeability, and vasculogenic mimicry (VM) formation ability of human umbilical vein endothelial cells (HUVEC), and tumor metastasis. Furthermore, we also observed that the persistent high expression of exosomal circRNA-100,338 in serum of HCC patients who underwent curative hepatectomy may be a risk indicator of pulmonary metastasis and poor survival. Conclusions: Our findings indicated that metastatic ability of HCC cells could be enhanced by transferring exosomal circRNA-100,338 to recipient HUVECs, which could affect proangiogenic activity by regulating angiogenesis.
Circular RNAs (circRNAs) represent a class of endogenous noncoding RNAs that have recently been recognized as important regulators of gene expression and pathological networks. However, their transcriptional activities and functional mechanisms in cancer remain largely unknown. Here, we present results from a global circRNA expression and functional analysis of patients with hepatocellular carcinoma (HCC). Using a circRNA microarray, we identified 226 differentially expressed circRNAs, of which 189 were significantly upregulated and 37 were downregulated. High expression of circRNA_100338, one of the upregulated circRNAs in HCC, is closely correlated with a low cumulative survival rate and metastatic progression in HCC patients with hepatitis B. Furthermore, our in silico and experimental analyses identified miR-141-3p as a direct target of circRNA_100338. Thus, circRNA_100338 functions as an endogenous sponge for miR-141-3p in HCC. In addition, we identified the crucial antagonistic roles of circRNA_100338 and miR-141-3p in the regulation of invasive potential in liver cancer cells. Overall, the differential expression of multiple circRNAs in HCC tissues and their clinical significance in hepatitis B-related HCC patients as revealed by our study suggests that circRNA_100338 is a potentially valuable biomarker for HCC diagnosis and target for HCC therapeutics.
The long noncoding RNA (lncRNA) H19 has been recently characterized as an oncogenic lncRNA in some tumors. However, the role of H19 in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, we found that not only the levels of H19 was overexpressed in PDAC compared with adjacent normal tissues, but also H19 expression was upregulated remarkably in primary tumors which subsequently metastasized, compared to those did not metastasis. Subsequently, the efficacy of knockdown of H19 by H19-small interfering RNA (siRNA) was evaluated in vitro, and we found that downregulation of H19 impaired PDAC cell invasion and migration. We further demonstrated that H19 promoted PDAC cell invasion and migration at least partially by increasing HMGA2-mediated epithelial-mesenchymal transition (EMT) through antagonizing let-7. This study suggests an important role of H19 in regulating metastasis of PDAC and provides some clues for elucidating the lncRNA-miRNA functional network in cancer.
Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory syndrome-like illness with high pathogenicity and mortality due to the lack of effective therapeutics. Currently, only few antiviral agents are available for the treatment of MERS, but their effects have been greatly impaired by low antiviral activity, poor metabolic stability, and serious adverse effects. Therefore, the development of effective treatment for MERS is urgently needed. In this study, a series of heptad repeat 1 (HR1) peptide inhibitors have been developed to inhibit HR1/HR2-mediated membrane fusion between MERS-CoV and host cells, which is the major pathway of MERS-CoV-induced host infections. Particularly, peptide pregnancy-induced hypertension (PIH) exhibits potent inhibitory activity with IC 50 of 1.171 μM, and its inhibitory effects can be further increased to 10-fold by forming a gold nanorod complex (PIH-AuNRs). In addition, PIH-AuNRs display enhanced metabolic stability and biocompatibility in vitro and in vivo and, therefore, effectively prevent MERS-CoV-associated membrane fusion. In summary, PIH-AuNRs represent a novel class of antiviral agents and have a great potential in treating MERS in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.