Based on the acoustoelectric (AE) effect, transcranial acoustoelectric brain imaging (tABI) is of potential for brain functional imaging with high temporal and spatial resolution. With nonlinear and non-steady-state, brain electrical signal is microvolt level which makes the development of tABI more difficult. This study demonstrates for the first time in vivo tABI of different steady-state visual stimulation paradigms. Method: To obtain different brain activation maps, we designed three steady-state visual stimulation paradigms, including binocular, left eye and right eye stimulations. Then, tABI was implemented with one fixed recording electrode. And, based on decoded signal power spectrum (tABI-power) and correlation coefficient between steady-state visual evoked potential (SSVEP) and decoded signal (tABI-cc) respectively, two imaging methods were investigated. To quantitatively evaluate tABI spatial resolution performance, ECoG was implemented at the same time. Finally, we explored the performance of tABI transient imaging. Results: Decoded AE signal of activation region is consistent with SSVEP in both time and frequency domains, while that of the nonactivated region is noise. Besides, with transcranial measurement, tABI has a millimeter-level spatial resolution (<3mm). Meanwhile, it can achieve millisecond-level (125ms) transient brain activity imaging. Conclusion: Experiment results validate tABI can realize brain functional imaging under complex paradigms and is expected to develop into a brain functional imaging method with high spatiotemporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.