In the paper, the necessity of root stubble harvesting and recycling was put forward from the perspective of biomass energy utilization. To accomplish mechanized harvesting on root stubble, a rotary digging machine was designed based on parametric modeling software Solidworks. Firstly, parts were built under entity modeling module, and then assembled to 4 main mechanisms in assembling environment. Secondly, mechanisms including frame, transmission mechanism, suspension mechanism and digging mechanism were assembled together to establish the whole prototype on which interference checking was done. Through manual change of the transmission chain's installation position, the digging mechanism was able to shift between reverse and forward rotation according to different soil conditions. Finally, relevant 2-D engineering drawings were generated for manufacture. The paper provides methodological reference for the design of similar machines and preparation for further simulation and analysis of the designed models.
The flow field has significantly impact on seeding performance in the suction seeding device. A three-dimensional, incompressible, viscous, RNG turbulence model and the SIMPLE method were used by computational fluid dynamics(CFD), and the flow fields of suction cylinder-seeder with different socket's radiuses were simulated by Fluent. When vacuum is 4kPa and productivity is 350 trays/h, the simulant results show that pressure is uniform, velocity is stable, energy loss mainly occurs near slots and outlet, and there is less interaction among socket-slots; The effect of flow field on socket's radius to the cylinder isn't significant by contrasting different socket's radiuses on the average turbulent kinetic energy, the average vacuum and the maximum difference of velocity behind slots; The experimental results show that the best seeding performance is 84.73% when the socket's radius is 5.5mm. Although the performance should be improved, but any sockets are never plugged, which shows enough that the seeder is a very promising precision seeding device.
The digital model of the laboratory bench parts of digging deep rootstalk crops were established through adopting the parametric model technology based on feature. The virtual assembly of the laboratory bench of digging deep rootstalk crops was done and the digital model of the laboratory bench parts of digging deep rootstalk crops was gained. The vibrospade, which is the key part of the laboratory bench of digging deep rootstalk crops was simulated and the movement parametric curves of spear on the vibrospade were obtained. The results show that the spear was accorded with design requirements. It is propitious to the deep rootstalk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.