Tissue repair and regenerative medicine address the important medical needs to replace damaged tissue with functional tissue. Most regenerative medicine strategies have focused on delivering biomaterials and cells, yet there is the untapped potential for drug-induced regeneration with good specificity and safety profiles. The Hippo pathway is a key regulator of organ size and regeneration by inhibiting cell proliferation and promoting apoptosis. Kinases MST1 and MST2 (MST1/2), the mammalian Hippo orthologs, are central components of this pathway and are, therefore, strong target candidates for pharmacologically induced tissue regeneration. We report the discovery of a reversible and selective MST1/2 inhibitor, 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino)benzenesulfonamide (XMU-MP-1), using an enzyme-linked immunosorbent assay-based high-throughput biochemical assay. The cocrystal structure and the structure-activity relationship confirmed that XMU-MP-1 is on-target to MST1/2. XMU-MP-1 blocked MST1/2 kinase activities, thereby activating the downstream effector Yes-associated protein and promoting cell growth. XMU-MP-1 displayed excellent in vivo pharmacokinetics and was able to augment mouse intestinal repair, as well as liver repair and regeneration, in both acute and chronic liver injury mouse models at a dose of 1 to 3 mg/kg via intraperitoneal injection. XMU-MP-1 treatment exhibited substantially greater repopulation rate of human hepatocytes in the Fah-deficient mouse model than in the vehicle-treated control, indicating that XMU-MP-1 treatment might facilitate human liver regeneration. Thus, the pharmacological modulation of MST1/2 kinase activities provides a novel approach to potentiate tissue repair and regeneration, with XMU-MP-1 as the first lead for the development of targeted regenerative therapeutics.
Methuosis is a novel nonapoptotic mode of cell death characterized by vacuole accumulation in the cytoplasm. In this article, we describe a series of azaindole-based compounds that cause vacuolization in MDA-MB-231 cells. The most potent vacuole inducer, compound 13 (compound 13), displayed differential cytotoxicities against a broad panel of cancer cell lines, such as MDA-MB-231, A375, HCT116, and MCF-7, but it did not inhibit the growth of the nontumorigenic epithelial cell line MCF-10A. A mechanism study confirmed that the cell death was caused by inducing methuosis. Furthermore, compound 13 exhibited substantial pharmacological efficacy in the suppression of tumor growth in a xenograft mouse model of MDA-MB-231 cells without apparent side effects, which makes this compound the first example of a methuosis inducer with potent in vivo efficacy. These results demonstrate that methuosis inducers might serve as novel therapeutics for the treatment of cancer.
Approximately 80% of breast cancers overexpress the kinase breast tumor kinase (BRK)/protein tyrosine kinase 6, which has various oncogenic roles in breast cancer cell proliferation, survival, and migration. However, BRK inhibitors have yet to be explored as possible therapeutic tools. In this study, we used a parallel compound-centric approach to discover a new class of pharmaceutical agents, exemplified by XMU-MP-2, as potent and selective BRK inhibitors. XMU-MP-2 exhibited target-specific inhibition of BRK kinase activity and disrupted signaling pathways mediated by this activity, thereby reducing proliferation in BRK-positive breast cancer cells. In mouse xenograft models, XMU-MP-2 repressed the growth of tumors driven by oncogenic BRK, including BRK-transformed Ba/F3 cells and BRK-positive breast cancer cells. Notably, XMU-MP-2 cooperated strongly with HER2 inhibitor or ER blockade to block breast cancer cell proliferation in vitro and in vivo Overall, our findings offer a preclinical proof of concept for therapeutic targeting of the BRK kinase in breast cancer. Cancer Res; 77(1); 175-86. ©2016 AACR.
Marine natural products are served as attractive source of anticancer therapeutics, with the great success of "first-in-class" drugs, such as Yondelis, Halaven, and Brentuximab vendotin. Lagunamides A-C from marine cyanobacterium, Lyngbya majuscula, exhibit exquisite growth inhibitory activities against cancer cells. In this study, we have systematically investigated the structure-activity relationships (SARs) of a concise collection of lagunamide A and its analogues constructed by total chemical synthesis against a broad panel of cancer cells derived from various tissues or organs, including A549, HeLa, U2OS, HepG2, BEL-7404, BGC-823, HCT116, MCF-7, HL-60, and A375. The R configuration of lagunamide A at C-39 position was found to be the structure determinant for anticancer activity. Further molecular mechanism study in A549 cells revealed that lagunamide A induced caspase-mediated mitochondrial apoptosis. Accompanied with the dissipation of mitochondrial membrane potential (Δφm) and overproduction of reactive oxygen species (ROS), lagunamide A led to mitochondrial dysfunction and finally caused cell death. Moreover, both anti- and pro-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins participated in lagunamide A-induced mitochondrial apoptosis, especially myeloid cell leukemia-1 (Mcl-1). Overexpression of Mcl-1 partly rescued A549 cells from lagunamide A-induced apoptosis. This study suggests that lagunamide A may exert anticancer property through mitochondrial apoptosis. Together, our findings would provide insightful information for the design of new anticancer drugs derived from lagunamides.
Upregulation of glycolysis and the pentose phosphate pathway (PPP) is a major characteristic of the metabolic reprogramming of cancer and provides cancer cells with energy and vital metabolites to support their rapid proliferation. Targeting glycolysis and the PPP has emerged as a promising antitumor therapeutic strategy. Marine natural products are attractive sources for anticancer therapeutics, as evidenced by the antitumor drug Yondelis. Mycoepoxydiene (MED) is a natural product isolated from a marine fungus that has shown promising inhibitory efficacy against HeLa cells in vitro. We used a proteomic approach with two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry to explore the cellular targets of MED and to unravel the molecular mechanisms underlying the antitumor activity of MED in HeLa cells. Our proteomic data showed that triosephosphate isomerase (TPI) and 6-phosphogluconolactonase (PGLS), which participate in glycolysis and the PPP, respectively, were significantly downregulated by MED treatment. Functional studies revealed that the expression levels of several other enzymes involved in glycolysis and the PPP, including hexokinase 2 (HK2), phosphofructokinase 1 (PFKM), aldolase A (ALDOA), enolase 1 (ENO1), lactate dehydrogenase A (LDHA), and glucose-6-phosphate dehydrogenase (G6PD), were also reduced in a dose-dependent manner. Moreover, the LDHA and G6PD enzymatic activities in HeLa cells were inhibited by MED, and overexpression of these downregulated enzymes rescued HeLa cells from the growth inhibition induced by MED. Our data suggest that MED suppresses HeLa cell growth by inhibiting glycolysis and the PPP, which provides a mechanistic basis for the development of new therapeutics against cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.