The Stockbridge vibration damper is widely used in overhead transmission lines to reduce Aeolian vibration. Although a linear analytical model has been developed to interpret characteristics of the vibration damper, a much more detailed model is needed to investigate how the nonlinear factors of the structure affect its vibration characteristics. The paper presents a full-scale finite element model of the Stockbridge vibration damper, in which contact conditions are taken into account using the linear perturbation method. Relations between the contact conditions and mode frequencies were studied. It was proved that contact conditions between each two parts of the damper have significant influence on the stiffness of the whole structure. Results obtained from the numerical model compare well with those from the experiment. Finally, this numerical model was applied to investigate how the bonding material between the counterweight and steel strand cable affects the mode frequencies of the vibration damper.
Considering the fact that wind turbines operate at the bottom of the atmospheric boundary layer (ABL) where the turbulence is at a high level, and the difficulty of mesh generation in the fully modelled numerical simulation. It is necessary to carry out researches to study the wake flow of wind turbines with consideration of the inflow turbulence. Therefore, a numerical method generating turbulence was proposed and the results show good agreement with those in experiment, based on which the flow fields in the wake of a wind turbine at two tip speed ratios were examined in detail through three actuator methods, namely, ADM, ADM-R and ALM. The performances of these methods were studied and the error sources for each method are clarified. Moreover, the computational efficiency was revealed and the influencing factor for the efficiency is concluded. Besides, the equilibrium relation of the N-S equation in the wake is revealed, which provides a theoretical basis for the optimal arrangement of the wind turbine. It shows that the mean velocity and fluctuating velocity vary greatly near the wind turbine, and become stable gradually away from the wind turbine. The results of ALM method show the best agreement with the experiment. At near wake region, the turbulent stress term, pressure gradient term and convection term mainly contribute to the equation equilibrium, and convection term is in equilibrium with the turbulent stress term at far wake. The results of ALM method are the most accurate and the most time consuming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.