Background: Transcription is disruptive to chromatin structure and can expose cryptic promoters. Results: We identify those factors that might regulate cryptic transcription from within inactive and transcribed locations. Conclusion: Nucleosome shielding prevents cryptic transcription, and replication-independent histone replacement is co-operatively mediated by three H3-H4 chaperones. Significance: Understanding how cryptic transcription is regulated and lost histones replaced is of fundamental importance.
PurposeUrinary extracellular vesicles (uEVs) are a novel source of biomarkers. However, urinary Tamm–Horsfall Protein (THP; uromodulin) interferes with all vesicle isolation attempts, precipitates with normal urinary proteins, thus, representing an unwanted “contaminant” in urinary assays. Thus, the aim is to develop a simple method to manage THP efficiently.Experimental designThe uEVs are isolated by hydrostatic filtration dialysis (HFD) and treated with a defined solution of urea to optimize release of uEVs from sample. Presence of uEVs is confirmed by transmission electron microscopy, Western blotting, and proteomic profiling in MS.ResultsUsing HFD with urea treatment for uEV isolation reduces sample complexity to a great extent. The novel simplified uEV isolation protocol allows comprehensive vesicle proteomics analysis and should be part of any urine analytics to release all sample constituents from THP trap.Conclusions and clinical relevanceThe method brings a quick and easy protocol for THP management during uEV isolation, providing major benefits for comprehensive sample analytics.
BackgroundNumerous studies have demonstrated the life-extending effect of caloric restriction. It is generally accepted that caloric restriction has health benefits, such as prolonging lifespan and delaying the onset and progression of CKD in various species, especially in rodent models. Although many studies have tested the efficacy of caloric restriction, no complete quantitative analysis of the potential beneficial effects of reducing caloric intake on the development and progression of CKD has been published.MethodsAll studies regarding the relationship between caloric restriction and chronic kidney diseases were searched in electronic databases, including PubMed/MEDLINE, EMBASE, Science Citation Index (SCI), OVID evidence-based medicine, Chinese Bio-medical Literature and Chinese science and technology periodicals (CNKI, VIP, and Wan Fang). The pooled odds ratios (OR) and 95% confidence intervals (95% CI) were calculated by using fixed- or random-effects models.ResultsThe data from 27 of all the studies mentioned above was used in the Meta analysis. Through the meta-analysis, we found that the parameter of blood urea nitrogen, serum creatinine and urinary protein levels of the AL group was significant higher than that of the CR group, which are 4.11 mg/dl, 0.08mg/dl and 33.20mg/kg/24h, respectively. The incidence of the nephropathy in the caloric restriction (CR) group was significantly lower than that in the ad libitum—fed (AL) group. We further introduced the subgroup analysis and found that the effect of caloric restriction on the occurrence of kidney disease was only significant with prolonged intervention; the beneficial effects of CR on the 60%-caloric-restriction group were greater than on the less-than-60%-caloric-restriction group, and caloric restriction did not show obvious protective effects in genetically modified strains. Moreover, survival rate of the caloric restriction group is much higher than that of the ad libitum—fed (AL) group.ConclusionsOur findings demonstrate for the first time that compared with the AL group, the caloric restriction indeed decreased urea nitrogen, creatinine, urine protein, incidence of kidney diseases and increased the survival rate on 700~800 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.