BackgroundHuman endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood have mesenchymal stem/stromal cells (MSCs) characteristics and can differentiate into cell types that arise from all three germ layers. We hypothesized that EnSCs may offer promise for restoration of ovarian dysfunction associated with premature ovarian failure/insufficiency (POF/POI).MethodsMouse ovaries were injured with busulfan and cyclophosphamide (B/C) to create a damaged ovary mouse model. Transplanted EnSCs were injected into the tail vein of sterilized mice (Chemoablated with EnSCs group; n = 80), or culture medium was injected into the sterilized mice via the tail vein as chemoablated group (n = 80). Non-sterilized mice were untreated controls (n = 80). Overall ovarian function was measured using vaginal smears, live imaging, mating trials and immunohistochemical techniques.ResultsEnSCs transplantation increased body weight and improved estrous cyclicity as well as restored fertility in sterilized mice. Migration and localization of GFP-labeled EnSCs as measured by live imaging and immunofluorescent methods indicated that GFP-labeled cells were undetectable 48 h after cell transplantation, but were later detected in and localized to the ovarian stroma. 5’-bromodeoxyuridine (BrdU) and mouse vasa homologue (MVH) protein double-positive cells were immunohistochemically detected in mouse ovaries, and EnSC transplantation reduced depletion of the germline stem cell (GSCs) pool induced by chemotherapy.ConclusionEnSCs derived from menstrual blood, as autologous stem cells, may restore damaged ovarian function and offer a suitable clinical strategy for regenerative medicine.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0516-y) contains supplementary material, which is available to authorized users.
IntroductionOvarian dysfunction frequently occurs in female cancer patients after chemotherapy, but human amniotic epithelial cells (hAECs) that can differentiate into cell types that arise from all three germ layers may offer promise for restoration of such dysfunction. Previous studies confirmed that hAECs could differentiate into cells that express germ cell-specific markers, but at this time hAECs have not been shown to restore ovarian function.MethodsTo model premature ovarian failure, hAECs infected with lenti-virus carrying green fluorescent protein were injected into the tail vein of mice sterilized with cyclophosphamide and busulphan. hAECs migrated to the mouse ovaries and overall ovarian function was measured using immunohistochemical techniques.ResultsSeven days to two months after hAECs transplantation, ovarian cells were morphologically restored in sterilized mice. Hemotoxylin and eosin staining revealed that restored ovarian cells developed follicles at all stages. No follicles were observed in control mice at the same time period. Immunostaining with anti-human antigen antibodies and pre-transplantation labeling with green fluorescent protein (GFP) revealed that the grafted hAECs survived and migrated to mouse ovary, differentiating into granulosa cells. Furthermore, the ovarian function marker, anti-Müllerian hormone, was evident in treated mouse ovaries after hAEC transplantation.ConclusionsIntravenously injected hAECs reached the ovaries of chemotherapy-treated mice and restored folliculogenesis, data which suggest promise for hAECs for promoting reproductive health and improving the quality of life for female cancer survivors.
BackgroundHuman amniotic epithelial cells (hAECs) are attractive candidates for regenerative medical therapy, with the potential to replace deficient cells and improve functional recovery after injury. Previous studies have demonstrated that transplantation of hAECs effectively alleviate chemotherapy-induced ovarian damage via inhibiting granulose cells apoptosis in animal models of premature ovarian failure/insufficiency (POF/POI). However, the underlying molecular mechanism accounting for hAECs-mediated ovarian function recovery is not fully understood.MethodsTo investigate whether hAECs-secreting cytokines act as molecular basis to attenuate chemotherapy-induced ovarian injury, hAECs or hAEC-conditioned medium (hAEC-CM) was injected into the unilateral ovary of POF/POI mouse. Follicle development was evaluated by H&E staining at 1, 2 months after hAECs or hAEC-CM treatment. In addition, we performed a cytokine array containing 507 human cytokines on hAECs-derived serum-free conditioned medium. Finally, we further investigated whether hAECs could affect chemotherapy-induced apoptosis in primary human granulosa-lutein (hGL) cells and the tube formation of human umbilical vein endothelial cells (hUVECs) via a co-culture system in vitro.ResultsWe observed the existence of healthy and mature follicles in ovaries treated with hAECs or hAEC-CM, whereas seriously fibrosis and many atretic follicles were found in the contralateral untreated ovaries of the same mouse. To distinguish cytokines involved in the process of hAECs-restored ovarian function, hAEC-CM was analyzed with a human cytokines array. Results revealed that 109 cytokines in hAEC-CM might participate in a variety of biological processes including apoptosis, angiogenesis, cell cycle and immune response. In vitro experiments, hAECs significantly inhibited chemotherapy-induced apoptosis and activated TGF-β/Smad signaling pathway within primary granulosa-lutein cells in paracrine manner. Furthermore, hAEC-CM was shown to promote angiogenesis in the injured ovaries and enhance the tube formation of human umbilical vein endothelial cells (hUVECs) in co-culture system.ConclusionsThese findings demonstrated that paracrine might be a key pathway in the process of hAECs-mediating ovarian function recovery in animal models of premature ovarian failure/insufficiency (POF/POI).Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-017-0721-0) contains supplementary material, which is available to authorized users.
IntroductionPremature ovarian failure and insufficiency are significant long-term side-effects of chemotherapy for female cancer patients. Recently, stem cell transplantation has been identified as a promising treatment for premature ovarian failure and insufficiency. We have previously demonstrated that human amniotic epithelial cells (hAECs) migrate into injured tissue and promote the recovery of ovarian function in chemoablated mice. However, the molecular mechanism guiding this process remains unclear.MethodsTo further investigate the effect of hAECs on chemotherapy-induced apoptosis, cultured primary hAECs were injected intravenously into mice treated with cyclophosphamide and busulphan. Apoptosis of granulosa cells was observed by TUNEL staining, and apoptosis-related gene expression was performed on ovarian tissue by real-time PCR and Western blot 7 days after hAEC transplantation. Additionally, the ovarian function and fertility of mice were assessed via counts of follicles and mating experiments at 4 weeks after hAEC transplantation.ResultshAECs significantly inhibited tumor necrosis factor-alpha-mediated granulosa cell apoptosis induced by chemotherapeutics and reduced the inflammatory reaction in ovaries at 7 days after transplantation. In addition, 4 weeks after transplantation, hAECs promoted the development of follicles and increased the number of cumulus oocyte complexes in chemoablated mice. Furthermore, hAECs improved ovarian mass and increased the number of follicles compared to those of the chemoablated group, and hAEC transplantation partially rescued the fertility of chemoablated mice.ConclusionshAEC transplantation promotes ovarian function by inhibiting tumor necrosis factor-alpha-mediated cell apoptosis and reducing inflammation in chemotherapy-induced premature ovarian failure. These results suggest a potential molecular mechanism for the effective therapy of hAEC transplantation in chemotherapy-induced premature ovarian failure and insufficiency.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-015-0148-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.