The mechanisms underlying the immune defense by trophoblasts against pathogens remain ill defined. We demonstrated that placental cell death was increased upon in vivo exposure to Listeria monocytogenes. The death of infected cells is an important host innate defense mechanism. Meanwhile, double-stranded DNA (dsDNA) derived from intracellular bacteria or dsDNA viruses is emerging as a potent pathogen-associated molecular pattern recognized by host cells. We sought to characterize trophoblast death in response to cytosolic dsDNA challenge. Our results showed that dsDNA induced caspase-dependent and -independent cell death in human trophoblasts. However, necroptosis, a cell death pathway independent of caspase, could not be induced by dsDNA treatment, even in the presence of exogenously expressed RIPK3. L. monocytogenes-derived genomic DNA triggered a similar cell death pattern. Moreover, the cell death in response to dsDNA was IFI16 dependent. These data suggest that cytosolic dsDNA induces nonnecroptotic cell death in trophoblasts via IFI16, and this could contribute to placental barrier against infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.