This paper focuses on a rapid and nondestructive way to discriminate the geographical origin of Anxi-Tieguanyin tea by near-infrared (NIR) spectroscopy and chemometrics. 450 representative samples were collected from Anxi County, the original producing area of Tieguanyin tea, and another 120 Tieguanyin samples with similar appearance were collected from unprotected producing areas in China. All these samples were measured by NIR. The Stahel-Donoho estimates (SDE) outlyingness diagnosis was used to remove the outliers. Partial least squares discriminant analysis (PLSDA) was performed to develop a classification model and predict the authenticity of unknown objects. To improve the sensitivity and specificity of classification, the raw data was preprocessed to reduce unwanted spectral variations by standard normal variate (SNV) transformation, taking second-order derivatives (D2) spectra, and smoothing. As the best model, the sensitivity and specificity reached 0.931 and 1.000 with SNV spectra. Combination of NIR spectrometry and statistical model selection can provide an effective and rapid method to discriminate the geographical producing area of Anxi-Tieguanyin.
Near-infrared (NIR) spectroscopy and chemometric methods were applied to internal quality control of a Chinese green tea, Longjing, with Protected Geographical Indication (PGI). A total of 2745 authentic Longjing tea samples of three different grades were analyzed by NIR spectroscopy. To remove the influence of abnormal samples, The Stahel-Donoho estimate (SDE) of outlyingness was used for outlier analysis. Partial least squares discriminant analysis (PLSDA) was then used to classify the grades of tea based on NIR spectra. Different data preprocessing methods, including smoothing, taking second-order derivative (D2) spectra, and standard normal variate (SNV) transformation, were performed to reduce unwanted spectral variations in samples of the same grade before classification models were developed. The results demonstrate that smoothing, taking D2 spectra, and SNV can improve the performance of PLSDA models. With SNV spectra, the model sensitivity was 1.000, 0.955, and 0.924, and the model specificity was 0.979, 0.952, and 0.996 for samples of three grades, respectively. FT-NIR spectrometry and chemometrics can provide a robust and effective tool for rapid internal quality control of Longjing green tea.
Using mixed-model-based composite interval mapping and conditional statistical methods, we studied quantitative trait loci (QTLs) with epistatic effects and QTLs by environment interaction effects for rice seed set percent (SSP), filled grain number per plant (FGP), and panicle length (PL). A population of 241 recombinant inbred lines was used which was derived from a cross between "Zhenshan 97" and "Minghui 63." Its linkage map included 221 molecular markers. Our QTL analysis detected 28, 25, and 32 QTLs for SSP, FGP, and PL, respectively. Each QTL explained 1.37%∼13.19% of the mean phenotypic variation. A comparison of conventional and conditional mapping provided information about the genetic control system involved in the synthetic process of SSP, FGP, and PL at the level of individual QTLs. Conditional QTLs with reduced (or increased) effects were identified for SSP, which were significantly influenced by FGP or PL. Some QTLs could express independently for the given traits, thereby providing possibilities for simultaneous improvement of SSR and PL, and SSR and FGP. Epistasis was more sensitive to environmental conditions than were additive effects.
This paper focused on an effective method to discriminate the geographical origin of Wuyi-Rock tea by the stable isotope ratio (SIR) and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (n = 99) collected from nine producing areas and non-Wuyi-Rock tea (n = 33) from eleven nonproducing areas were analysed for SIR and MEP by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the model. The results show that δ2H, δ18O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and not all of the metallic elements improve the prediction accuracy of the SVM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.