A method for the vibration and noise reduction of a typical aircraft panel structure under noise excitations is studied. The noise excitations are caused by travelling wave test device, and the experimental is performed by the piezoelectric switching shunt circuit based on the piezoelectric effect.
In this paper, the typical aircraft panel is excited by the noise induced in traveling wave tube, the vibratory phenomenon of the typical aircraft panel is researched in detail. The piezoelectric vibration of the aircraft panels is damped by Synchronized Switch Damping on Inductor technology (SSDI technology). The acceleration parameters of the structure are controlled and the effect of structural damping is achieved.
The severe aerodynamic heating on the surface of modern hypersonic flight vehicle, that can bring high temperature and large temperature gradients in the structure of the vehicle, will be a challenge for the vehicles design and multidisciplinary optimization. The transient thermal environment consists of high temperature and large temperature gradients will generate two important problems related to vehicle structure, namely: 1) the material property, such as elastic modulus, will be degraded at elevated temperature, and 2) the non-uniform thermal stress cased by large temperature gradients will change the stiffness distribution of wing structure, which can make the modal frequencies and shapes of structure changed remarkably. Firstly, the theory and methodology of structure modal analysis in transient thermal environment is outlined. Subsequently, the transient temperature field of structure considering aerodynamic heating is obtained by employing computational technology of aerodynamic heating/structure heat transfer coupling program. Finally, the modal frequencies and shapes of vehicle structure under transient temperature field is calculated based on finite element method (FEM). Based on the analysis and investigation of the simulation results, the influence of the transient thermal environment on structure modal frequency and shape is determined. Furthermore, the investigation of wing structure modal analysis considering aerodynamic heating is an important basis of aerothermoelastic simulation.
In the field of automotive engineering, noise and vibration in the car comes mainly from the engine and the road passed through the body, suspension, mount and exhaust system path to the car or reverberation. So this article , a model of white body transfer path analysis and research, improves the rigidity of white body, to reduce noise, vibration, and weight is reduced, and find out the resonance phenomena because of insufficient stiffness of car body, combining body CAE modal analysis results provide the theoretical basis for the optimization of structural damping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.