Predicting landslide displacement is of great significance in geotechnical engineering. An iteration-based combined prediction method was proposed for predicting the landslide displacement in this paper. Firstly, the landslide displacement was predicted by 10 latest multivariable grey models, and then the final landslide displacement prediction value was obtained through an iteration-based combined strategy. Concurrently, the reliability of the quadratic programming-based combined prediction method (QPCPM) and the iteration-based combined prediction method (ICPM) was rigorously proved in this paper. In addition, the inapplicability conditions of the optimal weight-based combined prediction method (OWCPM) were pointed out. ICPM could be regarded as a simplified version of QPCPM. The Bazimen and Baishuihe landslides in the Three Gorges Reservoir area of China were used as numerical examples to elaborate the performance of ICPM. This paper also demonstrated the reliability of ICPM by considering the effects of rainfall and reservoir water level on landslide displacement. Overall, ICPM features in simple and easy calculation and has rosy engineering application prospects.
This paper combined characteristics of agricultural topic tracking, researches attributes reduction of Rough Set Theory. The experimental results show that the algorithm is verified to be more feasible and effective. Solve the key problems of agricultural topic tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.