Aims To characterize directly the conjugated metabolites of morphine in urine samples of cancer patients. Methods Urine samples from the patients were treated by solid-phase extraction method and chromatographed using three high-performance liquid chromatography systems. Conjugated metabolites were directly detected with liquid chromatographic/ion trap mass spectrometric (LC/MS n ) technique by selected ion monitoring, full scan MS/MS and MS 3 modes. Results Six conjugated metabolites including two new metabolites M5 and M6 were found. Morphine-3-glucuronide (M-3-G) and morphine-6-glucuronide (M-6-G) were identified by comparing their l.c. retention times and multistage mass spectra with those of the reference substances. Two novel metabolites, morphine-3-glucoside and morphine-6-glucoside, as well as normorphine glucuronides were identified by comparing their mass fragment patterns and l.c. retention times with those of M-3-G and M-6-G. Hydrolysis of urine samples with b -glucosidase and bglucuronidase provided further evidence of the metabolites M5 and M6 as morphine glucosides. The excretion amounts of morphine conjugates in urines were in the order of morphine glucuronides, morphine glucosides and normorphine glucuronides. Conclusions In the present study, the applications of l.c. separation and multistage mass spectra have permitted the direct identification of conjugated metabolites of morphine. To our knowledge, this is the first report about O -linked glucosides of morphine at 3-aromatic and 6-aliphatic hydroxyl groups.
An analytical method for the determination imazaquin residues in soybeans was developed. The developed liquid/liquid partition and strong anion exchange solid-phase extraction procedures provide the effective cleanup, removing the greatest number of sample matrix interferences. By optimizing mobile-phase pH water/acetonitrile conditions with phosphoric acid, using a C-18 reverse-phase chromatographic column and employing ultraviolet detection, excellent peak resolution was achieved. The combined cleanup and chromatographic method steps reported herein were sensitive and reliable for determining the imazaquin residues in soybean samples. This method is characterized by recovery [88.4%, precision \6.7% CV, and sensitivity of 0.005 ppm, in agreement with directives for method validation in residue analysis. Imazaquin residues in soybeans were further confirmed by high performance liquid chromatographymass spectrometry (LC-MS). The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.