Three triticale cultivars differing in aluminium (Al) stress response, together with 1 Al-tolerant wheat cultivar (Carazinho) and 1 Al-tolerant wheat line (ET3), were used to investigate the root exudation of organic acids during Al stress. The likely relationship of organic acid exudation with Al tolerance, as assessed by root regrowth in nutrient solutions, was also examined. An enzymatic assay was used to detect malate release from both root tips and the whole root system; high performance liquid chromatography (HPLC) was also used to measure the exudation of organic acids from Al-stressed root tips. The enzymatic assay revealed some associations between Al tolerance and malate efflux from Al-stressed wheat or triticale roots, although Al-tolerant triticale cvv. Tahara and 19th ITSN 70-4 released less malate than the Al-tolerant wheat. HPLC analysis indicated that malate and citrate were not the main exudates related to the different levels of Al tolerance in these triticale cultivars. A yet to be identified organic acid in 19th ITSN 70-4 showed significant concentration differences from 2 other cultivars tested. This study highlighted the importance and necessity of elucidating the biochemical mechanisms involved in Al stress tolerance in triticale and other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.