Secreted proteins in the Wnt family regulate gene expression in target cells by causing the accumulation of the transcriptional activator beta-catenin. In the absence of Wnt, a protein complex assembled around the scaffold protein Axin targets beta-catenin for destruction, thereby preventing it from transducing inappropriate signals. Loss of Axin or its binding partners APC and GSK3 results in aberrant activation of the Wnt signaling response. We have analyzed the effects of mutant forms of Drosophila Axin with large internal deletions when expressed at physiological levels in vivo, either in the presence or absence of wild type Axin. Surprisingly, even deletions that completely remove the binding sites for fly APC, GSK3 or beta-catenin, though they fail to rescue to viability, these mutant forms of Axin cause only mild developmental defects, indicating largely retained Axin function. Furthermore, two lethal Axin deletion constructs, AxinDeltaRGS and AxinDeltabeta cat(DeltaArm), can complement each other and restore viability. Our findings support a model in which the Axin complex is assembled through cooperative tripartite interactions among the binding partners, making the assembly of functional complexes surprisingly robust.
Members of the Wg/Wnt family provide key intercellular signals during embryonic development and in the maintenance of homeostatic processes, but critical aspects of their signal transduction pathways remain controversial. We have found that canonical Wg signaling in Drosophila involves distinct initiation and amplification steps, both of which require Arrow/LRP. Expressing a chimeric Frizzled2-Arrow protein in flies that lack endogenous Wg or Arrow showed that this construct functions as an activated Wg receptor but is deficient in signal amplification. In contrast, a chimeric Arrow protein containing the dimerization domain of Torso acted as a potent amplifier of Wg signaling but could not initiate Wg signaling on its own. The two chimeric proteins synergized, so that their co-expression largely reconstituted the signaling levels achieved by expressing Wg itself. The amplification function of Arrow/LRP appears to be particularly important for long-range signaling, and may reflect a general mechanism for potentiating signals in the shallow part of a morphogen gradient.
Proper regulation of the Wingless/Wnt signaling pathway is essential for normal development. The scaffolding protein Axin plays a key role in this process through interactions with Drosophila Shaggy and Armadillo. In the current studies, we used a yeast two-hybrid assay to identify ten amino acids in Axin that are critical for in vitro interaction with Shaggy and two for interaction with Armadillo. We then generated five Axin variants in which individual putative contact amino acids were mutated and compared their activity, as assayed by rescue of axin null mutant flies, to that of Axin lacking the entire Shaggy (AxinΔSgg) or Armadillo (AxinΔArm) binding domain. Although we expected these mutants to function identically to Axin in which the entire binding domain was deleted, we instead observed a spectrum of phenotypic rescue. Specifically, two point mutants within the Shaggy binding domain showed loss of activity similar to that of AxinΔSgg and dominantly interfered with complex function, whereas a third mutant allele, AxinK446E retained most function. Two Axin point mutants within the Armadillo binding domain were weak alleles, and retained most function. These findings demonstrate the importance of in vivo verification of the role of specific amino acids within a protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.