Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3–8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108–613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.
Wolbachia are widespread endosymbionts found in a large variety of arthropods. While these bacteria are generally transmitted vertically and exhibit weak virulence in their native hosts, a growing number of studies suggests that horizontal transfers of Wolbachia to new host species also occur frequently in nature. In transfer situations, virulence variations can be predicted since hosts and symbionts are not adapted to each other. Here, we describe a situation where a Wolbachia strain (wVulC) becomes a pathogen when transfected from its native terrestrial isopod host species (Armadillidium vulgare) to another species (Porcellio d. dilatatus). Such transfer of wVulC kills all recipient animals within 75 days. Before death, animals suffer symptoms such as growth slowdown and nervous system disorders. Neither those symptoms nor mortalities were observed after injection of wVulC into its native host A. vulgare. Analyses of wVulC's densities in main organs including Central Nervous System (CNS) of both naturally infected A. vulgare and transfected P. d. dilatatus and A. vulgare individuals revealed a similar pattern of host colonization suggesting an overall similar resistance of both host species towards this bacterium. However, for only P. d. dilatatus, we observed drastic accumulations of autophagic vesicles and vacuoles in the nerve cells and adipocytes of the CNS from individuals infected by wVulC. The symptoms and mortalities could therefore be explained by this huge autophagic response against wVulC in P. d. dilatatus cells that is not triggered in A. vulgare. Our results show that Wolbachia (wVulC) can lead to a pathogenic interaction when transferred horizontally into species that are phylogenetically close to their native hosts. This change in virulence likely results from the autophagic response of the host, strongly altering its tolerance to the symbiont and turning it into a deadly pathogen.
Mass treatment with praziquantel (PZQ) monotherapy is the mainstay for schistosome treatment. This drug shows imperfect cure rates in the field and parasites showing reduced response to PZQ can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of variation in PZQ response in a S. mansoni population (SmLE-PZQ-R) selected with PZQ in the laboratory: 35% of these worms survive high dose (73 µg/mL) PZQ treatment. We used genome wide association to map loci underlying PZQ response. The major chr. 3 peak shows recessive inheritance and contains a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790), activated by nanomoles of PZQ. Marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP enriched populations of PZQ-R and PZQ-S parasites showing >377 fold difference in PZQ response. The PZQ-R parasites survived treatment in rodents better than PZQ-S. Resistant parasites show 2.25-fold lower expression of Sm.TRPMPZQ than sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, while Sm.TRPMPZQ activators increased sensitivity. A single SNP in Sm.TRPMPZQ differentiated PZQ-ER and PZQ-ES lines, but mutagenesis showed this was not involved in PZQ-R, suggesting linked regulatory changes. We surveyed Sm.TRPMPZQ sequence variation in 259 individual parasites from the Newand Old World revealing one nonsense mutation, that results in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ response in S. mansoni and provides an approach for monitoring emerging PZQ-resistance alleles in schistosome elimination programs..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.