CP-induced polyuria in rats is associated with a significant decrease in the expression of collecting duct (AQP2 and AQP3) and proximal nephron and microvascular (AQP1) water channels in the inner medulla.
Recent reports have documented a functional deficit of organic cation transport in diabetic rats by an unknown mechanism. This study was designed to test the hypothesis that experimental diabetes decreases expression of organic cation transporters at the basolateral membrane. Streptozotocin-induced diabetic rats were maintained for varying durations after induction of diabetes. A second group of agematched control rats was maintained in a parallel manner. Kinetic analysis of tetraethylammonium accumulation in freshly isolated proximal tubular cells indicated a significantly lower V max value for the diabetics versus controls with no statistical difference in K m values between the two groups. Cortex sections were processed by standard procedures for Northern and immunoblot analysis. Protein expression of the organic cation transporters rOCT1 and rOCT2 progressively decreased with increasing duration of diabetes. After 21 days of diabetes, rOCT1 and rOCT2 were maximally reduced by 50 and 70%, respectively. Quantification of mRNA expression revealed that the roct1 transcript remained unchanged, whereas the roct2 transcript was decreased by 50% after 14 days of diabetes. Treatment with insulin prevented the reductions in transporter levels. These results support the hypothesis by demonstrating that experimental diabetes decreased expression of both rOCT1 and rOCT2 protein and also of roct2 mRNA accumulation. On the other hand, roct1 mRNA levels were unaffected by the diabetic state. This suggests that differences in rOCT2 protein may result from transcriptional and/or translational changes, whereas rOCT1 deficits may be due to posttranscriptional alterations.
Using morphological and molecular approaches, we characterized cisplatin-induced cell necrosis and apoptosis in rat kidney. Male Sprague-Dawley rats ( n=5 per group) received a single intraperitoneal injection of either cisplatin (5 mg/kg) or saline, and were killed on day 5. Functionally, cisplatin-treated rats developed polyuric acute renal failure. Morphologically, kidneys of cisplatin-treated rats showed overt tubular necrosis associated with apoptosis in the corticomedullary junction. Cell necrosis was segment-specific and was distributed in radial fashion at the corticomedullary junction. The apoptosis was limited to discrete cells in apparently intact tubules in the vicinity of the necrosed tubules. The apoptotic changes were confirmed by TUNEL (TdT-mediated deoxyuridine triphosphate nick-end labeling) and staining for cleaved caspase-3. Analysis of outer medullary tissue for apoptosis-related molecules by RNase protection assay revealed a significant increase in the expression of pro-apoptotic mRNAs (caspases 1, 2, and 8, and Bax) in cisplatin-treated rats. On the other hand, the expression of mRNA for the anti-apoptotic Bcl-2 did not change, resulting in a decrease in relative ratio of Bcl-2/Bax, and thus favoring apoptosis. The above changes were paralleled by a marked increase in caspase-3 precursor, the executioner protease. Furthermore, these pro-apoptotic molecular changes were associated with a 3-fold increase in the activity of JNK1 in the outer medulla, but not in the cortex, of cisplatin-treated rat kidneys, localizing to the site of maximal apoptosis. Upregulation of JNK1 activity in the outer medulla was not accompanied by changes in the activities of ERK or p38 kinase. In conclusion, these data suggest that cisplatin-induced apoptotic cell death in native kidney may be mediated by cooperative activation of the JNK1 pathway and Bax in the outer medulla.
Changes in the abundance of outer or inner medullary salt or urea transporters are unlikely to play a role in the CP-induced reduction in medullary hypertonicity. However, qualitative changes in UT proteins may affect their functionality and thus may have a role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.