The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
1. Defensive individuals, termed soldiers, have recently been discovered in aphids, Soldiers are typically early instar larvae, and in many species the soldiers are reproductively sterile and morphologically and behaviourally specialized. 2. Since aphids reproduce parthenogenetically, we might expect soldier production to be more widespread in aphids than it is. We suggest that a more useful way to think about these problems is to attempt to understand how a clone (rather than an individual) should invest in defence and reproduction. 3. Known soldiers are currently restricted to two families of aphids, the Pemphigidae and Hormaphididae, although they are distributed widely among genera within these families. We discuss the use of a phylogenetic perspective to aid comparative studies of soldier production and we demonstrate this approach using current estimates of phylogenetic affinities among aphids. We show that the distribution of soldier production requires a minimum of six to nine evolutionary origins plus at least one loss. 4. At least four main types of soldiers exist and we present and discuss this diversity of soldiers. 5. Most soldier-producing species produce soldiers within plant galls and we discuss the importance of galls for the evolution of soldiers. 6. We summarize the evidence on the interactions between soldiers and predators and between soldier-producing aphids and ants. 7. We present an optimality model for soldier investment strategies to help guide investigations of the ecological factors selecting for soldiers. 8. The proximate mechanisms of soldier production are currently very poorly understood and we suggest several avenues for further research.
Forest canopies represent the functional interface between 90% of the Earth's terrestrial biomass and the atmosphere and include some of the most threatened of all terrestrial ecosystems. However, we lack even a basic understanding of how the biomass of plants and animals is distributed throughout forest canopies, even though this information is vital for estimating energy flow, carbon cycling, resource use and the transfer of materials within this ecosystem. Here we measure the biomass of invertebrates living in a common rainforest epiphyte, describe a striking relationship between fern size and the biomass of animals within the ferns, and reveal that one large epiphyte may contain an invertebrate biomass similar to that found in the whole of the rest of the tree crown on which it is growing. Using these data, we show that including the fauna of these epiphytes--a neglected component in rainforest ecosystems--can more than double our estimate of the total invertebrate biomass in an entire rainforest canopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.