Silver staining artifacts, unrelated to protein, such as horizontal lines and vertical micro or point streaking on two‐dimensional gels with carrier ampholytes or immobilized pH gradients in the first dimension are efficiently eliminated by adding iodoacetamide to the equilibration buffer of the first‐dimensional gel.
Leaf proteins from 14 barley cultivars (Hordeum vulgare) were analyzed by two-dimensional electrophoresis with immobilized pH gradients (IPG 4-7 and IPG 6-10) in the first dimension. Highly reproducible two-dimensional patterns were obtained, owing to constant spot positions along the isoelectric focusing axis. A number of variety-specific protein spots were detected, allowing us to discriminate barley cultivars not only into main groups but into individual cultivars.
Horizontal two-dimensional (2-D) electrophoresis with immobilized pH gradients (IPG) in the first dimension for buffer soluble proteins and for complex proteins solubilized in the presence of Nonidet P-40 (Görg et al., Electrophoresis 1987, 8, 45-51), has been extended to analyze basic proteins of yeast cells focused under non-equilibrium and equilibrium conditions. Transient state isoelectric focusing (IEF) in IPG gels revealed sample smearing and background staining, displaying horizontal streaks in the resultant 2-D patterns. Inclusion of 0.5% carrier ampholytes (CA) to the IPG gel (IPG-CA), resulted in the formation of many sharp protein bands after transient state IEF with resultant distinct spots in the 2-D patterns; however, resolution was poor and the gel contained heavy background staining. With prolonged focusing time, background staining disappeared and there was less difference in the final steady state IEF patterns obtained with IPG and IPG-CA. Reduction of the Immobiline concentration to one third the manufacturer's recommended amount did not improve IEF resolution with respect to streaking and background staining under either transient state or equilibrium conditions. In general, spot intensities were less on 2-D gels using diluted IPG gels than with "standard" IPG gels. Optimization of 2-D electrophoresis with IPGs in the first dimension was strongly related to IEF conditions. The use of IPG gels focused to equilibrium should not only improve inter-gel reproducibility and resolution but also the quality of the final 2-D patterns with respect to background staining and horizontal streaking.
The suitability of high-resolution two-dimensional gel electrophoresis for barley cultivar discrimination and for classification with respect to their malting properties was studied. Seed proteins of 14 barley cultivars with different malting qualities were extracted with urea/dithiothreitol/Nonidet P-40 buffer and subjected to two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension (IPG-DALT). The results of IPG-DALT were compared to the protein patterns obtained by a standard technique, sodium dodecyl sulfate polyacrylamide gel electrophoresis of hordeins. Sodium dodecyl sulfate-gel electrophoresis yielded seven different "B" and four different "C" hordein patterns; "A" and "D" hordein patterns were uniform in all cultivars tested. Four cultivars could be distinguished unequivocally, the others were classified into three groups containing between two and five cultivars. In contrast to these findings. IPG-DALT yielded three different "A", eight different "B", four different "C" and two different "D" hordein patterns. When the "A", "B", "C" and "D" hordein patterns were combined, ten cultivars exhibited unique hordein patterns whereas the remaining ones were classified into two groups containing two cultivars each. Moreover, when albumin and globulin proteins were used for evaluation in addition to the hordeins, all cultivars could be discriminated by IPG-DALT. IPG-DALT, performed on small-scale and/or ready-made gels, proved to be an ideal complementary system to one-dimensional electrophoretic methods for routine seed testing purposes because of its speed, reliability, and simplicity. IPG-DALT was also applied to study the relationship between the different polypeptide patterns and the malting quality. Although cultivars with identical one-dimensional protein patterns but different malting quality could be successfully differentiated by IPG-DALT, a direct correlation between specific protein spots or protein patterns to the malting quality was not found within the cultivars tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.