The prediction of drug metabolism is an important task in drug development. Besides well-established in vitro and in vivo methods using biological matrices, several biomimetic models have been developed. This review summarizes three different nonenzymatic strategies, including metalloporphyrins as surrogates of the active centre of cytochrome P450, Fenton's reagent, and the electrochemical oxidation of drug compounds. Although none of the systems can simulate the whole range of cytochrome P450-catalyzed reactions adequately, the biomimetic models show some advantages over standard in vitro methods. For example, metalloporpyhrin catalysts allow the synthesis of certain metabolites in sufficient amounts and with sufficient purities to permit characterization and further pharmacological and toxicological tests. The electrochemical generation of metabolites coupled on-line to liquid chromatography/mass spectrometry is a promising tool for studying reactive metabolites and can be applied in automated high-throughput screening approaches. In this paper, detailed comparisons with cytochrome P450 catalysis are drawn, advantages and disadvantages of the respective methods are revealed, and possible applications are discussed.
The detection of reactive metabolites using conventional in vivo and in vitro techniques is hampered because the intermediately formed reactive species are prone to covalent binding to cellular macromolecules. Therefore, the application of improved methods is required. The on-line coupling of an electrochemical reactor and horseradish peroxidase immobilized on magnetic microparticles with liquid chromatography/mass spectrometry (EC/LC/MS or HRP/LC/MS) allows the direct detection of reactive metabolites of the model compounds amodiaquine, amsacrine, and mitoxantrone, which are all known for readily binding to cellular macromolecules after metabolization by cytochrome P450. EC/LC/MS and HRP/LC/MS experiments were compared to rat liver microsome incubations and proved to be valuable complementary methods since reactive quinone, quinone imine, and quinone diimine species could be detected directly and not only after trapping with glutathione. Furthermore, N-dealkylation and N-oxidation of amodiaquine were successfully simulated by electrochemical oxidation reactions, as well as the formation of an aldehyde. Therefore, EC/LC/MS and HRP/LC/MS are promising tools for the identification of both reactive and stable metabolites in drug development.
On-line electrochemistry/liquid chromatography/mass spectrometry was used to simulate the detoxification mechanism of paracetamol in the body. In an electrochemical flow-through cell, paracetamol was oxidized at a porous glassy carbon working electrode at a potential of 600 mV vs. Pd/H2 with formation of a quinoneimine intermediate. The quinoneimine further reacted with glutathione and/or N-acetylcysteine to form isomeric adducts via the thiol function. The adducts were characterized on-line by liquid chromatography/mass spectrometry. These reactions are similar to those occurring between paracetamol and glutathione under catalysis by cytochrome P450 enzymes in the body.
ABSTRACT:Triclocarban (3,4,4-trichlorocarbanilide, TCC) is a widely used antibacterial agent in personal care products and is frequently detected as an environmental pollutant in waste waters and surface waters. In this study, we report novel reactive metabolites potentially formed during biotransformation of TCC. The oxidative metabolism of TCC has been predicted using an electrochemical cell coupled online to liquid chromatography and electrospray ionization mass spectrometry. The electrochemical oxidation unveils the fact that hydroxylated metabolites of TCC may form reactive quinone imines. Moreover, a so-far unknown dechlorinated and hydroxylated TCC metabolite has been identified. The results were confirmed by in vitro studies with human and rat liver microsomes. The reactivity of the newly discovered quinone imines was demonstrated by their covalent binding to glutathione and macromolecules, using -lactoglobulin A as a model protein. The results regarding the capability of the electrochemical cell to mimic the oxidative metabolism of TCC are discussed. Moreover, the occurrence of reactive metabolites is compared with findings from earlier in vivo studies and their relevance in vivo is argued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.