The amorphous/nanocrystalline Ni-Mo alloys were deposited in alkaline nickel carbonate solution in this paper. It is found that the molybdenum content in the deposit obtained in carbonate solution is to 21.76 at.% with amorphous and nanocrystalline phase structure. Under the same conditions, the amorphous/nanocrystalline alloys are more accessible to be obtained in carbonate solution as the sulfate solution. And the deposits with a tiny internal stress and tiny granules and well-proportioned grains at the substrate were relatively better and easy to be controlled with a better mechanical performance.
A variety of foamed Ni-Mo alloys coatings have been obtained using pulsed electrodeposition technique. The deposit is mainly composed of amorphous structural through the X-ray diffractions (XRD), the morphology clearly contains large amounts of multi-bubble pore structure with pentagonal or hexagonal skeleton structure and obviously stratifys through scanning electron microscopy (SEM) experimentals. This pentagonal or hexagonal skeleton structure and obvious stratification has a larger surface area. The electrolysis experiments show that such foamed alloys have a low hydrogen evolution overpotential and a better corrosion resistance in 25°C, 7mol·L-1 KOH alkaline solution.
The amorphous alloy application is limited because of its brittleness property. Based on the grain structural characteristics of nanocrystal alloys, the mechanical behavior of the amorphous/nanocrystal Ni-Mo alloy is investigated in this text. The microstructure of the deposit and the crack propagation were discussed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that amorphous/nanocrystal Ni-Mo alloy has a higher microhardness, a strong binding force between a certain thickness coating with the substrate.
The amorphous-nanocrystal Ni-Mo deposits were obtained by electrodeposition in alkaline nickel carbonate solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and modern technologies were used to describe the content, microstructure and morphology of the deposits. The electrochemical characteristics of Ni-Mo deposits were electrolyzed in 33°C, 7 mol/L NaOH electrolytic solutions. The results showed that when I was 100 mA·cm−2, the hydrogen evolution potential of Ni-Mo21.76 was lower than amorphous Ni-Mo26.36 and 250mV lower than the nanocrystal Ni cathode. And the Ni-Mo deposits with more amorphous phase content would be in lower hydrogen evolution overpotential, a higher exchange current density, and a better electrolytic stability. These due to the amorphous combined with nanocrystal, lager contact surface and binding energy of Ni-Mo structure.
The amorphous alloy application is limited because of its brittleness property. Based on the grain structural characteristics of nanocrystal alloys, the mechanical behavior of the amorphous/nanocrystal Ni-Mo23.56alloy is investigated in this text. The microstructure of the deposit and the crack propagation were discussed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that amorphous/nanocrystal Ni-Mo23.56alloy has a higher microhardness, a strong binding force between a certain thickness coating with the substrate. The tensile stress-strain pattern shows a certain degree of plastic deformation behavior in the coating and tensile fracture surface of radial vein structure, in line with the free volume fracture model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.