The effect of different dietary protein levels and DL-methionine (Met) supplementation on hair growth and the resulting pelt quality in mink was studied. Four groups of male mink were fed with four isocaloric diets containing 32% (P32), 24% (P24), 16% (P16) or P24+Met (0.8%) crude protein of dry matter (DM) from September to December. Skin biopsies were taken at the pelting. Histological techniques and computer-assisted light microscopy were used to determine the ratio of activity (ROA) of under hairs and guard hairs respectively. The results showed that when the dietary protein level reduced from 32% to 16%, body length, number and diameter of under hairs and guard hairs of minks declined, and pelt length and pelt weight of minks decreased significantly (p < 0.05). These parameters were similar between P32 and P24 with Met supplementation (p > 0.05). The hair follicle density of the winter coat was not influenced by the dietary protein levels and Met supplementation (p > 0.05). Low-protein diets content led to a reduction of hair follicle developing to next phase. It was documented that 24% crude protein of DM with Met supplementation during growing-furring period was sufficient for minks to express their genetic capacity to develop hair follicles and achieve the prime fur characteristics. Overall this study demonstrated that hair growth and hair properties in pelts are very dependent on the dietary protein and Met supply in the growing-furring period of minks.
Tea-oil tree (Camellia oleifera Abel) is an important economic woody plant in southern China. The buds, fruits, and leaves of tea oil tree are all susceptible to the disease, causing the wilt or even fall of the plant. Every year, the disease incidence of anthracnose reached 20%-40% in diseased fields. In 2020, leaves with anthracnose were collected from the main producing areas of tea-oil tree in Yunnan Province and Guizhou Province, China. To isolate the pathogen, several fragments of diseased tissues (5×5mm) were disinfected in 75% alcohol for 40 s, and rinsed 3 times in sterilized water. Then, tissues were placed on PDA medium and incubated at 26℃ for 5 days. Fungal isolates with morphology characteristics similar to Colletotrichum spp. were consistently recovered from diseased tissues. Eighteen fungal isolates were obtained. Among them, 3 representative single-spore isolates (C2, gy15, Ch) were picked for further analysis. The isolates C2 and gy15 on the PDA were gray-white in the initial stage, and later became olive green and spread to the edge. Abundant orange-red conidial masses were present in the colony surface. Conidia were cylindrical and with blunt circles at both ends, with a size of 9.9 µm ~ 21.8 µm × 4.0 µm ~ 6.8 µm (n=50). The hyphae of isolate Ch on PDA were thin, cotton-like, gray to gray-black; the center of the back of the colony was brown, and the color of the colony became darker, and concentric rings could be produced. The conidia were cylindrical , with blunt circles at both ends, with a size of 6.3 µm ~15.0 µm × 3.2 µm ~ 7.0µm (n=50). In order to further identify the pathogens, the internal transcribed spacer (ITS) region of ribosomal DNA, actin (ACT), chitin synthase (CHS), β-tubulin (TUB2), calmodulin (CAL) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were amplified (Weir et al. 2012; Yang et al. 2009). The resulting sequences were deposited under the GenBank accession numbers OK148894, OM397909, OM249943, OL422149, OM184266 and OM718003 for C2,OK148975, OM397910, OM249944, OL422150, OM184267, OM718004 for gy15, OK148976, OM397911, OM249945, OL422151, OM184268 and OM718005 for Ch. A BLAST search showed that the sequences of isolates C2 and gy15 had 99.57% to 100% similarity to the type strain of Colletotrichum kahawae ICMP12952. The sequences of isolate Ch had 99.03% to 100% similarity to the type strain of Colletotrichum horri ICMP 17968. Further, a phylogenetic tree based on the combined ITS, ACT, CHS, TUB, CAL, and GAPDH sequence using the neighbor-joining algorithm revealed that the isolates were C. kahawae and C. horri (Fig. 1). Pathogenicity assays were conducted on healthy leaves collected from 1-year-old tea-oil tree. The experiments were repeated twice. The leaves were surface-sterilized with 75% ethanol. After drying, they were placed in a plastic box pre-laid with sterilized absorbent paper. The leaf surface was slightly pierced with a sterile needle, and each stab wound was inoculated with 10 μL of conidial suspension (1×106 conidia/ml). All inoculated leaves were placed in a moist chamber at 25℃ with 80% relative humidity. After 10 days, inoculated leaves showed similar symptoms as observed in the field, whereas controls remained symptomless. C. kahawae and C. horri were re-isolated from the diseased leaves, and identifed by sequencing. C. kahawae is widespread on coffee in Africa (Waller et al. 1993). C. horri has been associated with fruit and stem diseases of Diospyros kaki from China, Japan, and New Zealand (Weir et al. 2010). To our knowledge, this is the first report of C. kahawa and C. horri causing anthracnose of tea-oil tree.
Root rot of peanut, caused by Fusarium spp., is a devastating disease in most peanut cultivation regions. In this reported outbreak, Fusarium root rot of peanut has been observed in Henan province, China in July 2021. About 20% of peanuts in a field (0.66 ha) were affected. Early symptoms comprised the wilt of the lower leaves, and the darkening of the vascular tissue of roots, which turned brown. Progressively, the whole plant wilted, the roots rotted, and the plant ultimately died. Pathogenic species were isolated from plants showing symptoms of root rot in the field. A total of 206 Fusarium isolates were generated, and 16 isolates were preliminarily identified as Fusarium fujikuroi based on morphological characteristics. Isolates were obtained and grown on PDA plates. Isolates developed floccose white aerial mycelia with reddish-pink coloration in the medium in 2 weeks on the benchtop. Macroconidia were 3-5 septate, measuring 27.5 to 48.8 × 2.6 to 3.8 μm (avg. 36.7 × 3.6 μm, n=50). Microconidia were abundant in chains, mainly asepatate, oval to kidney-shaped, 4.0 to 11.6 × 2.5 to 4.1 μm (avg. 5.8 ×3.1 μm, n=50). DNA was extracted from mycelium and the following genes were amplified and sequenced: the internal transcribed spacer (ITS) region using ITS1/ITS4 primers (White et al.1990) (Genbank assessions MZ831304 to MZ831308), the partial calmodulin gene (CAM, primer CL1/CL2A, O’Donnell.)(Genbank assession MZ856333 to MZ856337) and the partial translation elongation factor (EF-1α) using primer EF1/EF2 (Geiser et al.)(Genbank assession MZ856338 to MZ8564342). FUSARIUM-ID analysis showed 98.18% to 100% similarity with sequences of the F. fujikuroi species complex. The phylogenetic analysis was conducted using a neighbor-joining algorithm based on the ITS, CAM, and EF-1α gene sequences. The isolates were clustered with F. fujikuroi clade (Supplementary Fig.1). Koch’s postulates were conducted using a sand-cornmeal-inoculum-layer method (Bilgi et al.). Briefly, 400 ml plastic boxes were filled with 15g of sterilized premium-grade coarse vermiculite, followed by a 15 g of inoculum prepared as sand-cornmeal mixture inoculum. The inoculum for each F. fujikuroi isolates was prepared by infesting a pre-sterilized sand-cornmeal mixture with three 5 mm plugs of cultures. Three F. fujikuroi isolates and PDA plugs were inoculated to serve as positive control and non-inoculated control treatments, respectively. The completed colonization of the sand-cornmeal mixture was finished by incubating at 25 ℃ for 7-10 days. Eight pre-germinated seeds of cv. Luhua No.1 was then covered with another 8 g of vermiculite. Peanuts were grown at 25 °C with 85% relative humidity under a light/dark cycle of 14h/10h. After 14 days of incubation, the inoculated plants showed typical symptoms of root rot similar to those in the field: pre-emergence damping-off, reddish-brown lesions on the tap, and lateral roots. F. fujikuroi was successfully re-isolated from inoculated plants but not from the controls and identified as described above. F. fujikuroi was reported to cause bakanae disease of rice (Amatulli et. al.), and root rot of soybeans (Zhao et. al.). To the best of our knowledge, this is the first record of F. fujikuroi causing root rot of peanut in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.