Highlights d Single-cell RNA-seq revealed distinct immune profiles in HPVand HPV + HNSCC d B cells, myeloid cells, and CD4+ Tconv cells were divergent by high-dimensional analysis d Multispectral imaging uncovered immune structures (TLSs) associated with HPV + disease d T follicular helper signature was associated with favorable survival in TCGA patients
Summary
Specific combinations of Acute Myeloid Leukemia (AML) disease alleles, including FLT3 and TET2 mutations, confer distinct biologic features and adverse outcome. We generated mice with mutations in Tet2 and Flt3, which resulted in fully penetrant, lethal AML. Multipotent Tet2−/−;Flt3ITD progenitors (LSK CD48+CD150−) propagate disease in secondary recipients and were refractory to standard AML chemotherapy and FLT3-targeted therapy. Flt3ITD mutations and Tet2 loss cooperatively remodeled DNA methylation and gene expression to an extent not seen with either mutant allele alone, including at the Gata2 locus. Re-expression of Gata2 induced differentiation in AML stem cells and attenuated leukemogenesis. TET2 and FLT3 mutations cooperatively induce AML, with a defined leukemia stem cell population characterized by site-specific changes in DNA methylation and gene expression.
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with extremely skewed ethnic and geographic distributions. Increasing evidence indicates that targeting the tumor microenvironment (TME) represents a promising therapeutic approach in NPC, highlighting an urgent need to deepen the understanding of the complex NPC TME. Here, we generated single-cell transcriptome profiles for 7581 malignant cells and 40,285 immune cells from fifteen primary NPC tumors and one normal sample. We revealed malignant signatures capturing intratumoral transcriptional heterogeneity and predicting aggressiveness of malignant cells. Diverse immune cell subtypes were identified, including novel subtypes such as CLEC9A+ dendritic cells (DCs). We further revealed transcriptional regulators underlying immune cell diversity, and cell–cell interaction analyses highlighted promising immunotherapeutic targets in NPC. Moreover, we established the immune subtype-specific signatures, and demonstrated that the signatures of macrophages, plasmacytoid dendritic cells (pDCs), CLEC9A+ DCs, natural killer (NK) cells, and plasma cells were significantly associated with improved survival outcomes in NPC. Taken together, our findings represent a unique resource providing in-depth insights into the cellular heterogeneity of NPC TME and highlight potential biomarkers for anticancer treatment and risk stratification, laying a new foundation for precision therapies in NPC.
Immune modulators can arrest loss of insulin secretion in type 1 diabetes mellitus (T1DM), but they have not caused permanent disease remission or restored normal insulin secretion. We tested whether exendin-4, a glucagon-like peptide-1 receptor agonist, would enhance remission of T1DM in NOD mice treated with anti-CD3 monoclonal antibody (mAb) and studied the effects of exendin-4 treatment on cellular and metabolic responses of beta-cells. Diabetic NOD mice treated with anti-CD3 mAb and exendin-4 had a higher rate of remission (44%) than mice treated with anti-CD3 mAb alone (37%) or exendin-4 (0%) or insulin or IgG alone (0%) (P < 0.01). The effect of exendin-4 on reversal of diabetes after anti-CD3 mAb was greatest in mice with a glucose level of less than 350 mg/dl at diagnosis (63 vs. 39%, P < 0.05). Exendin-4 did not affect beta-cell area, replication, or apoptosis or reduce the frequency of diabetogenic or regulatory T cells or modulate the antigenicity of islet cells. Reversal of T1DM with anti-CD3 mAb was associated with recovery of insulin in glucose transporter-2(+)/insulin(-) islet cells that were identified at diagnosis. Glucose tolerance and insulin responses improved in mice treated with combination therapy, and exendin-4 increased insulin content and insulin release from beta-cells. We conclude that treatment with glucagon-like peptide-1 receptor agonist enhances remission of T1DM in NOD mice treated with anti-CD3 mAb by enhancing the recovery of the residual islets. This combinatorial approach may be useful in treatment of patients with new-onset T1DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.