Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage-or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-␣, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolarcapillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.
Prostaglandin D2 (PGD2) signals through PGD2 receptor 2 (DP2, also known as CRTH2) on type 2 effector cells to promote asthma pathogenesis; however, little is known about its role during respiratory syncytial virus (RSV) bronchiolitis, a major risk factor for asthma development. We show that RSV infection up-regulated hematopoietic prostaglandin D synthase expression and increased PGD2 release by cultured human primary airway epithelial cells (AECs). Moreover, PGD2 production was elevated in nasopharyngeal samples from young infants hospitalized with RSV bronchiolitis compared to healthy controls. In a neonatal mouse model of severe viral bronchiolitis, DP2 antagonism decreased viral load, immunopathology, and morbidity and ablated the predisposition for subsequent asthma onset in later life. This protective response was abolished upon dual DP1/DP2 antagonism and replicated with a specific DP1 agonist. Rather than mediating an effect via type 2 inflammation, the beneficial effects of DP2 blockade or DP1 agonism were associated with increased interferon-λ (IFN-λ) [interleukin-28A/B (IL-28A/B)] expression and were lost upon IL-28A neutralization. In RSV-infected AEC cultures, DP1 activation up-regulated IFN-λ production, which, in turn, increased IFN-stimulated gene expression, accelerating viral clearance. Our findings suggest that DP2 antagonists or DP1 agonists may be useful antivirals for the treatment of viral bronchiolitis and possibly as primary preventatives for asthma.
The threat of a pandemic spread of highly virulent influenza A viruses currently represents a top global public health problem. Mass vaccination remains the most effective way to combat influenza virus. However, current vaccination strategies face the challenge to meet the demands in a pandemic situation. In a mouse model of severe influenza virus-induced pneumonitis, we observed that prior nasal administration of an attenuated strain of Bordetella pertussis (BPZE1) provided effective and sustained protection against lethal challenge with two different influenza A virus subtypes. In contrast to most cross-protective effects reported so far, the protective window offered upon nasal treatment with BPZE1 lasted up to at least 12 weeks, suggesting a unique mechanism(s) involved in the protection. No significant differences in viral loads were observed between BPZE1-treated and control mice, indicating that the cross-protective mechanism(s) does not directly target the viral particles and/or infected cells. This was further confirmed by the absence of cross-reactive antibodies and T cells in serum transfer and in vitro restimulation experiments, respectively. Instead, compared to infected control mice, BPZE1-treated animals displayed markedly reduced lung inflammation and tissue damage, decreased neutrophil infiltration, and strong suppression of the production of major proinflammatory mediators in their bronchoalveolar fluids (BALFs). Our findings thus indicate that protection against influenza virus-induced severe pneumonitis can be achieved through attenuation of exaggerated cytokine-mediated inflammation. Furthermore, nasal treatment with live attenuated B. pertussis offers a potential alternative to conventional approaches in the fight against one of the most frightening current global public health threats.
Integrins are critical for initiating T-cell activation events. The integrin-binding motif Arg-Gly-Asp (RGD) was incorporated into the pcDNA 3.1 mammalian expression vector expressing the codon-optimized extracellular domain of SARS coronavirus (SARS-CoV) spike protein, and tested by immunizing C57BL/6 mice. Significant cell-mediated immune responses were characterized by cytotoxic T-lymphocyte (51)Cr release assay and interferon-gamma secretion ELISPOT assay against RMA-S target cells presenting predicted MHC class I H2-Kb epitopes, including those spanning residues 884-891 and 1116-1123 within the S2 subunit of SARS-CoV spike protein. DNA vaccines incorporating the Spike-RGD/His motif or the Spike-His construct generated robust cell-mediated immune responses. Moreover, the Spike-His DNA vaccine construct generated a significant antibody response. Immunization with these DNA vaccine constructs elicited significant cellular and humoral immune responses. Additional T-cell epitopes within the SARS-CoV spike protein that may contribute to cell-mediated immunity in vivo were also identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.