We construct a subclass of Copson’s integral inequality in this article. In order to achieve this goal, we attempt to use the Steklov operator for generalizing different inequalities of the Copson type relevant to the situations ρ>1 as well as ρ<1. We demonstrate the inequalities with the guidance of basic comparison, Holder’s inequality, and the integration by parts approach. Moreover, some new variations of Hardy’s integral inequality are also presented with the utilization of Steklov operator. We also formulate many remarks and two examples to show the novelty and authenticity of our results.
In this article, some fractional Hardy-Leindler-type inequalities will be illustrated by utilizing the chain law, Hölder’s inequality, and integration by parts on fractional time scales. As a result of this, some classical integral inequalities will be obtained. Also, we would have a variety of well-known dynamic inequalities as special cases from our outcomes when
α
=
1
.
In this paper, we investigate new types of nonlocal implicit problems involving piecewise Caputo fractional operators. The existence and uniqueness results are proved by using some fixed point theorems. Furthermore, we present analogous results involving piecewise Caputo-Fabrizio and Atangana–Baleanu fractional operators. The ensuring of the existence of solutions is shown by Ulam-Hyer’s stability. At last, two examples are given to show and approve our outcomes.
The paper derives some new time-scale (TS) dynamic inequalities for multiple integrals. The obtained inequalities are special cases of Copson integral using Steklov operator in (TS) version with high dimension. We prove the inequalities with several formulas for the operator and in different cases
m
>
μ
+
1
and
m
<
μ
+
1
for every
μ
≥
1
, using time-scales (TSs) setting for integral properties, chain rules, Fubini’s theorem, and Hölder’s inequality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.