Datamonkey is a popular web-based suite of phylogenetic analysis tools for use in evolutionary biology. Since the original release in 2005, we have expanded the analysis options to include recently developed algorithmic methods for recombination detection, evolutionary fingerprinting of genes, codon model selection, co-evolution between sites, identification of sites, which rapidly escape host-immune pressure and HIV-1 subtype assignment. The traditional selection tools have also been augmented to include recent developments in the field. Here, we summarize the analyses options currently available on Datamonkey, and provide guidelines for their use in evolutionary biology. Availability and documentation: http://www.datamonkey.org.
Adaptive evolution frequently occurs in episodic bursts, localized to a few sites in a gene, and to a small number of lineages in a phylogenetic tree. A popular class of "branch-site" evolutionary models provides a statistical framework to search for evidence of such episodic selection. For computational tractability, current branch-site models unrealistically assume that all branches in the tree can be partitioned a priori into two rigid classes--"foreground" branches that are allowed to undergo diversifying selective bursts and "background" branches that are negatively selected or neutral. We demonstrate that this assumption leads to unacceptably high rates of false positives or false negatives when the evolutionary process along background branches strongly deviates from modeling assumptions. To address this problem, we extend Felsenstein's pruning algorithm to allow efficient likelihood computations for models in which variation over branches (and not just sites) is described in the random effects likelihood framework. This enables us to model the process at every branch-site combination as a mixture of three Markov substitution models--our model treats the selective class of every branch at a particular site as an unobserved state that is chosen independently of that at any other branch. When benchmarked on a previously published set of simulated sequences, our method consistently matched or outperformed existing branch-site tests in terms of power and error rates. Using three empirical data sets, previously analyzed for episodic selection, we discuss how modeling assumptions can influence inference in practical situations.
Admixed populations present unique opportunities to discover the genetic factors underlying many multifactorial diseases. The geographical position and complex history of South Africa has led to the establishment of the unique admixed population known as the South African Coloured. Not much is known about the genetic make-up of this population, and the historical record is patchy. We genotyped 959 individuals from the Western Cape area, self-identified as belonging to this population, using the Affymetrix 500k genotyping platform. This resulted in nearly 75,000 autosomal SNPs that could be compared with populations represented in the International HapMap Project and the Human Genome Diversity Project. Analysis by means of both the admixture and linkage models in STRUCTURE revealed that the major ancestral components of this population are predominantly Khoesan (32-43%), Bantu-speaking Africans (20-36%), European (21-28%) and a smaller Asian contribution (9-11%), depending on the model used. This is consistent with historical data. While of great historical and genealogical interest, this information is also essential for future admixture mapping of disease genes in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.