A model is presented to describe spontaneous type-II parametric down-conversion pumped by a broadband source. This process differs from the familiar cw-pumped down-conversion in that a broader range of pump energies is available for down-conversion. The properties of the nonlinear crystal determine how these energies are distributed into the down-converted photons. Because the two photons are polarized along different crystal axes, they have different spectral characteristics and are no longer exactly anticorrelated. As the pump bandwidth is increased, this effect becomes more pronounced. A fourth-order interference experiment is proposed, illustrating some of the features of broadband pumped down-conversion. ͓S1050-2947͑97͒08508-9͔
Multiphoton states constructed from photon pairs generated in the process of spontaneous parametric downconversion possess frequency and space-time correlations that may carry undesired distinguishing information. It is shown that these correlations may be eliminated if certain conditions in the source configuration are satisfied. For the cases in which these conditions cannot be satisfied because of experimental constraints, it is shown that the correlations may be reduced through proper choices of crystal length and pump bandwidth. The advantage of such source engineering is that it yields much higher count rates, since no photon pairs are lost by predetection spectral filtering.
Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.