Reliance on deep learning techniques has become an important trend in several science domains including biological science, due to its proven efficiency in manipulating big data that are often characterized by their non-linear processes and complicated relationships. In this study, Convolutional Neural Networks (CNN) has been recruited, as one of the deep learning techniques, to be used in classifying and predicting the biological activities of the essential oil-producing plant/s through their chemical compositions. The model is established based on the available chemical composition’s information of a set of endemic Egyptian plants and their biological activities. Another type of machine learning algorithms, Multiclass Neural Network (MNN), has been applied on the same Essential Oils (EO) dataset. This aims to fairly evaluate the performance of the proposed CNN model. The recorded accuracy in the testing process for both CNN and MNN is 98.13% and 81.88%, respectively. Finally, the CNN technique has been adopted as a reliable model for classifying and predicting the bioactivities of the Egyptian EO-containing plants. The overall accuracy for the final prediction process is reported as approximately 97%. Hereby, the proposed deep learning model could be utilized as an efficient model in predicting the bioactivities of, at least Egyptian, EOs-producing plants.
Day after day, the importance of relying on nature in many fields such as food, medical, pharmaceutical industries, and others is increasing. Essential oils (EOs) are considered as one of the most significant natural products for use as antimicrobials, antioxidants, antitumorals, and anti-inflammatories. Optimizing the usage of EOs is a big challenge faced by the scientific researchers because of the complexity of chemical composition of every EO, in addition to the difficulties to determine the best in inhibiting the bacterial activity. The goal of this article is to present a new computational tool based on two methodologies: reduction by using rough sets and optimization with particle swarm optimization. The developed tool dubbed as Essential Oil Reduction and Optimization Tool is applied on 24 types of EOs that have been tested toward 17 different species of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.