We hypothesized that lectin-like oxidized LDL receptor-1 (LOX-1) deletion may inhibit oxidative stress signals, reduce collagen accumulation and attenuate cardiac remodeling after chronic ischemia. Activation of LOX-1 plays a significant role in the development of inflammation, apoptosis and collagen signals during acute ischemia. Wild-type and LOX-1 knockout (KO) mice were subjected to occlusion of left coronary artery for 3 weeks. Markers of cardiac hypertrophy, fibrosis-related signals (collagen IV, collagen-1 and fibronectin) and oxidant load (nicotinamide adenine dinucleotide phosphate oxidase expression, activity of mitogen-activated protein kinases and left ventricular (LV) tissue thiobarbituric acid reactive substances) were analyzed. In in vitro experiments, HL-1 cardiomyocytes were transfected with angiotensin II (Ang II) type 1 receptor (AT1R) or type 2 receptor (AT2R) genes to determine their role in the cardiomyocyte hypertrophy. LOX-1 KO mice had 25% improvement in survival over the 3-week period of chronic ischemia. LOX-1 deletion reduced collagen deposition and cardiomyocyte hypertrophy (~75%) in association with a decrease in oxidant load and AT1R upregulation (all P<0.05). The LOX-1 KO mice hearts exhibited a disintegrin and metalloproteinase 10 (ADAM10) and a disintegrin and metalloproteinase 17 (ADAM17) expression and matrix metalloproteinase 2 activity, and increased AT2R expression (P<0.05). Attenuation of cardiac remodeling was associated with improved cardiac hemodynamics (LV ±dp/dt and cardiac ejection fraction). In vitro studies showed that it is AT1R, and not AT2R overexpression that induces cardiomyocyte hypertrophy. We demonstrate for the first time that LOX-1 deletion reduces oxidative stress and related intracellular signaling, which leads to attenuation of the positive feedback loop involving AT1R and LOX-1. This results in reduced chronic cardiac remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.