The RNA bacteriophages, a group that includes phages Qbeta and MS2, have a number of potential bionanotechnological applications, including cell specific drug delivery and as substrates for the formation of novel materials. Despite extensive sequence identity between their coat protein subunits, and an almost identical three-dimensional fold, Qbeta and MS2 capsids have dramatically different thermal stabilities. The increased stability of Qbeta has been correlated with the inter-subunit disulphide bonds present in that capsid and not present in MS2. We have tested this hypothesis directly using mass spectrometry. Analysis of the dissociated coat protein subunits suggests that inter-molecular disulphides are formed at the capsid five-fold but may not be at the three-fold axes. This conclusion has been tested by engineering disulphide cross-links into either the five-fold or three-fold positions of the recombinant MS2 capsid. Five-fold cross-linking results in a mutant with stability properties similar to those of Qbeta. Three-fold cross-linking results in a mutant unable to assemble T = 3 shells, implying that five-fold structures are on pathway to capsid assembly in these phages. The results demonstrate how it is possible to redesign the physical properties of phage shells and may be of general relevance to future applications of viruses and virus-like particles.
We have determined the structure to 2.8 Å of an RNA aptamer (F5), containing 2-deoxy-2-aminopurine (2AP) at the −10 position, complexed with MS2 coat protein by soaking the RNA into precrystallised MS2 capsids. The −10 position of the RNA is an important determinant of binding affinity for coat protein. Adenine at this position in other RNA stem-loops makes three hydrogen bonds to protein functional groups. Substituting 2AP for the −10 adenine in the F5 aptamer yields an RNA with the highest yet reported affinity for coat protein. The refined X-ray structure shows that the 2AP base makes an additional hydrogen bond to the protein compared to adenine that is presumably the principal origin of the increased affinity. There are also slight changes in phosphate backbone positions compared to unmodified F5 that probably also contribute to affinity. Such phosphate movements are common in structures of RNAs bound to the MS2 T = 3 protein shell and highlight problems for de novo design of RNA binding ligands.
Sequence-specific interactions between RNA stem-loops and coat protein (CP) subunits play vital roles in the life cycles of the RNA bacteriophages, e.g., by allowing translational repression of their replicase cistrons and tagging their own RNA genomes for encapsidation. The CPs of bacteriophages Qbeta and MS2 each discriminate in favor of their cognate translational operators, even in the presence of closely related operators from other phages in vivo. Discrete mutations within the MS2 CP have been shown to relax this discrimination in vitro. We have determined the structures of eight complexes between such mutants and both MS2 and Qbeta stem-loops with X-ray crystallography. In conjunction with previously determined in vivo repression data, the structures enable us to propose the molecular basis for the discrimination mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.