The Georgina Basin formed as a shallow intracratonic depression on the Australian craton along with a number of other basins in the Proterozoic and early Palaeozoic, probably in response to the break up of the Proterozoic supercontinent. Since all of these basins evolved under similar tectonic and sea-level controls, the basins all have similar sediment successions and, it might thus be assumed, similar petroleum prospectivity. One basin, the Amadeus Basin, currently has petroleum production, suggesting a potential for exploration success in the other intracratonic basins.In the Amadeus Basin the main petroleum prospects lie within or adjacent to major sub-basins that formed along the Basin's northern margin. The Georgina Basin has sub-basins that formed along its southern margin, almost as a mirror image of the Amadeus Basin. The lower Palaeozoic section of the Toko Syncline in the southern Georgina Basin has hydrocarbon shows in Middle Cambrian to Middle Ordovician rocks. Source rocks appear to have developed within the transgressive systems tract and the condensed interval of the highstand systems tract, at times when the basin was starved for clastic sediments and carbonate production was restricted.Seismic data acquired in the 1988 survey are of a higher quality than that previously obtained in the area. Its interpretation portrays the westward thrusting French Fault at the eastern edge of the Toko Syncline with potential hangingwall and footwall traps. Cambro- Ordovician Georgina Basin sediments subcrop the overlying Eromanga Basin with angularity, providing potentially large stratigraphic traps. Fracturing of the Cambrian and Ordovician carbonates within fault zones, and solution porosity at the unconformity, would also enhance reservoir potential in the area. Perhaps most significantly, the new data also shows an earlier, apparently independent basin completely buried beneath the Georgina section. The concealed section may simply be a very thick, early Upper Proterozoic section, or perhaps an equivalent to, or a lateral extension of the McArthur Basin. Recent work in the McArthur Basin has shown considerable source potential in the McArthur and Roper Groups, which may support the possibility of an additional, as yet unrecognised, source beneath the Georgina Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.