To determine the types of voltage-gated K+ channels controlling action potential repolarization in atrial cells, we have characterized the properties of depolarization-activated K+ channels in isolated adult rat atrial myocytes using the whole cell patch-clamp recording technique. On membrane depolarization, Ca2(+)-independent outward K+ currents in these cells begin to activate at approximately -40mV. At all test potentials, the currents activate rapidly after a delay, and there is little or no decay of the peak outward current amplitude during brief (100 ms) depolarizations. In addition, the currents show little steady-state inactivation at membrane potentials negative to -60 mV. The currents are blocked effectively by 1-5 mM 4-aminopyridine but are relatively insensitive to extracellular tetraethylammonium at concentrations up to 50 mM. Based on the measured time- and voltage-dependent properties and the pharmacological sensitivity of the currents, we suggest that the depolarization-activated K+ channels underlying the macroscopic currents in adult rat atrial myocytes are distinct from those described previously in other myocardial preparations, including adult rat ventricular myocytes. Interestingly, the outward K+ currents characterized here in isolated adult rat atrial myocytes are remarkably similar to those of several recently described "delayed rectifier" K+ channel genes isolated from rat brain cDNA libraries and expressed in Xenopus oocytes, suggesting that similar K+ currents are likely present in cells of the mammalian central nervous system.
Halothane has endothelium-independent vasoconstricting and vasodilating actions in isolated mesenteric resistance blood vessels. The vasoconstricting action appears to involve halothane-induced Ca2+ release from caffeine/ryanodine-sensitive intracellular store(s). The vasodilating action in phenylephrine- or KC1-constricted vessels is independent of the Ca(2+)-releasing action and most likely involves an effect(s) on sarcolemmal-dependent Ca2+ signaling (e.g., extracellular Ca2+ influx) and/or Ca2+ activation of contractile proteins. The magnitude of both the vasoconstricting and the vasodilating actions of halothane in these vessels at clinically relevant concentrations suggests these direct actions contribute to the overall cardiovascular effects of halothane in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.