We prove the Central Limit Theorem (CLT) from the definition of weak convergence using the Haar wavelet basis, calculus, and elementary probability. The use of the Haar basis pinpoints the role of L 2 ([0, 1]) in the CLT as well as the assumption of finite variance. We estimate the rate of convergence and prove strong convergence off the tails.
The construction of a multiresolution analysis starts with the specification of a scale function. The Fourier transform of this function is defined by an infinite product. The convergence of this product is usually discussed in the context of L 2 (R). Here, we treat the convergence problem by viewing the partial products as probabilities, converging weakly to a probability defined on an appropriate sequence space. We obtain a sufficient condition for this convergence, which is also necessary in the case where the scale function is continuous.These results extend and clarify those of A. Cohen, and Hernández, Wang, and Weiss. The method also applies to more general dilation schemes that commute with translations byIntroduction.
In this paper the whole family of fractional Brownian motions is constructed as a single Gaussian field indexed by time and the Hurst index simultaneously. The field has a simple covariance structure and it is related to two generalizations of fractional Brownian motion known as multifractional Brownian motions. A mistake common to the existing literature regarding multifractional Brownian motions is pointed out and corrected. The Gaussian field, due to inherited "duality", reveals a new way of constructing martingales associated with the odd and even part of a fractional Brownian motion and therefore of the fractional Brownian motion. The existence of those martingales and their stochastic representations is the first step to the study of natural wavelet expansions associated to those processes in the spirit of our earlier work on a construction of natural wavelets associated to Gaussian-Markov processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.