Accurate numerical calculation of the thermal profile in humans requires reliable estimates of the following five tissue properties: specific heat capacity (c), thermal conductivity (k), blood perfusion rates (m), metabolic heat production (A0), and density (ρ). A sixth property, water content (w, as a %), can also be used to estimate c and k. To date, researchers have used various and inconsistent estimates of these parameters, which hinders comparison of the corresponding results. In an effort to standardize and improve the accuracy of these parameters for future studies, we have documented over 150 key papers and books and developed a database of the six thermal properties listed above for 43 human tissues. For each tissue and each property the following were obtained: the average value, the number of source values, the minimum and maximum of source values, and the reference for each source value. A key premise for the development of the database was to only use references that provided the original measurements. This database is offered for use by the biological thermal modeling community to help improve the accuracy and consistency of thermal modeling results.
The 1998 International Commission for Non-Ionising Radiation (ICNIRP) Guidelines for human exposure to radiofrequency (RF) fields contain a recommendation to assess the potential impact of metallic implants in workers exposed up to the allowable occupational field limits. This study provides an example of how numerical electromagnetic (EM) and thermal modelling can be used to determine whether scattered RF fields around metallic implants in workers exposed to allowable occupational ambient field limits will comply with the recommendations of relevant standards and guidelines. A case study is performed for plane wave exposures of a 50 mm diameter titanium cranioplasty plate, implanted around 5-6 mm under the surface of the forehead. The level of exposures was set to the ambient power flux density limits for occupational exposures specified in the 1998 ICNIRP guidelines and the current 1999 IEEE C95.1 standard over the frequency range 100-3000 MHz. Two distinct peak responses were observed. There was a resonant response for the whole implant at 200-300 MHz where the maximum dimension of the implant is around a third of the wavelength of the RF exposure. This, however, resulted in relatively low peak specific energy absorption rate (SAR) levels around the implant at the exposure limits. Between 2100-2800 MHz, a second SAR concentrating mechanism of constructive interference of the wave reflected back and forth between the air-scalp interface and the scalp-plate interface resulted in higher peak SARs that were within the allowable limits for the ICNIRP exposures, but not for the IEEE C95.1 exposures. Moreover, the IEEE peak SAR limits were also exceeded, to a lesser degree, even when the implant was not present. However, thermal modelling indicated that the peak SAR concentrations around the implant did not result in any peak temperature rise above 1 degrees C for occupational exposures recommended in the ICNIRP guidelines, and hence would not pose any significant health risk.
The aim of this study is to examine the scale and significance of differences in peak specific energy absorption rate (SAR) in the brains of children and adults exposed to radiofrequency emissions from mobile phones. Estimates were obtained by method of multipole analysis of a three layered (scalp/cranium/brain) spherical head exposed to a nearby 0.4 lambda dipole at 900 MHz. A literature review of head parameters that influence SAR induction revealed strong indirect evidence based on total body water content that there are no substantive age-related changes in tissue conductivity after the first year of life. However, it was also found that the thickness of the ear, scalp and cranium do decrease on average with decreasing age, though individual variability within any age group is very high. The model analyses revealed that compared to an average adult, the peak brain 10 g averaged SAR in mean 4, 8, 12 and 16 year olds (yo) is increased by a factor of 1.31, 1.23, 1.15 and 1.07, respectively. However, contrary to the expectations of a recent prominent expert review, the UK Stewart Report, the relatively small scale of these increases does not warrant any special precautionary measures for child mobile phone users since: (a) SAR testing protocols as contained in the CENELEC (2001) standard provide an additional safety margin which ensures that allowable localized SAR limits are not exceeded in the brain; (b) the maximum worst case brain temperature rise (approximately 0.13 to 0.14 degrees C for an average 4 yo) in child users of mobile phones is well within safe levels and normal physiological parameters; and (c) the range of age average increases in children is less than the expected range of variation seen within the adult population.
Electric fields (E-fields) induced within a phantom head from exposure to three different advanced mobile phone system (AMPS) hand-held telephones were measured using an implantable E-field probe. Measurements were taken in the eye nearest the phone and along a lateral scan through the brain from its centre to the side nearest the phone. During measurement, the phones were positioned alongside the phantom head as in typical use and were configured to transmit at maximum power (600 mW nominal). The specific absorption rate (SAR) was calculated from the in situ E-field measurements, which varied significantly between phone models and antenna configuration. The SARs induced in the eye ranged from 0.007 to 0.21 W/kg. Metal-framed spectacles enhanced SAR levels in the eye by 9-29%. In the brain, maximum levels were recorded at the measurement point closest to the phone and ranged from 0.12 to 0.83 W/kg. These SARs are below peak spatial limits recommended in the U.S. and Australian national standards [IEEE Standards Coordinating Committee 28 (1991): C95.1-1991 and Standards Australia (1990): AS2772.1-1990] and the IRPA guidelines for safe exposure to radio frequency (RF) electromagnetic fields [IRPA (1988): Health Phys 54:115-123]. Furthermore, a detailed thermal analysis of the eye indicated only a 0.022 degrees C maximum steady-state temperature rise in the eye from a uniform SAR loading of 0.21 W/kg. A more approximate thermal analysis in the brain also indicated only a small maximum temperature rise of 0.034 degrees C for a local SAR loading of 0.83 W/kg.
The etiology of Idiopathic Environmental Intolerance attributed to Electromagnetic Fields (IEI-EMF) is controversial. While the majority of studies have indicated that there is no relationship between EMF exposure and symptoms reported by IEI-EMF sufferers, concerns about methodological issues have been raised. Addressing these concerns, the present experiment was designed as a series of individual case studies to determine whether there is a relationship between radiofrequency-electromagnetic field (RF-EMF) exposure and an IEI-EMF individual's self-reported symptoms. Three participants aged 44-64 were tested during a series of sham and active exposure trials (2 open-label trials; 12 randomized, double-blind, counterbalanced trials), where symptom severity and exposure detection were scored using 100 mm visual analogue scales. The RF-EMF exposure was a 902-928 MHz spread spectrum digitally modulated signal with an average radiated power output of 1 W (0.3 W/m incident power density at the participant). In the double-blind trials, no significant difference in symptom severity or exposure detection was found for any of the participants between the two conditions. Belief of exposure strongly predicted symptom severity score for all participants. Despite accounting for several possible limitations, the present experiment failed to show a relationship between RF-EMF exposure and an IEI-EMF individual's symptoms. Bioelectromagnetics. 39:132-143, 2018. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.