Three novel diamine monomers (VI, VII, and VIII) were synthesized. These diamine monomers lead to a number of semifluorinated poly(ether imide)s when reacted with different commercially available dianhydrides like pyromellitic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA), 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropene (6FDA), and oxydiphthalic dianhydride (ODA) by thermal imidization route. Elemental analyses, IR and NMR techniques were used to characterize the monomers and polymers. The resulting polymers exhibited weight average molar masses up to 1.78 Â 10 5 g mol
À1in GPC with respect to polystyrene standard and have very good solubility in several organic solvents such as NMP, DMF, DMAC, DMSO, chloroform, and THF. Very good solubility of these polymers in CDCl 3 enables their complete characterization by proton as well as 13 C-NMR techniques. The polymers showed very high thermal stability with decomposition temperature (5% weight loss) up to 5118C in air and high glass transition temperature up to 3118C depending upon the exact repeating unit structure. The polymer films showed high modulus (up to 2.9 GPa) as was evaluated by DMA. The polymers also showed very low water absorption (0.16%), low dielectric constant (2.35 at 1 MHz) and very good optical transmission.
An unsymmetrical diamine monomer 4‐(p‐aminophenoxy)‐3‐trifluoromethyl‐4′‐aminobiphenyl has been synthesized successfully. This monomer leads to the synthesis of different novel poly(ether imide)s when reacted with different dianhydrides like pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA), 2,2‐bis(3,4‐dicarboxyphenyl) hexafluoropropane (6FDA), and oxy diphthalic anhydride (ODA). The poly(ether imide) prepared from this monomer on reaction with 6FDA is soluble in several organic solvents such as N‐methylpyrolidinone (NMP), dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), tetrahydrofuran (THF), and CHCl3. The poly(ether imide)s prepared from BTDA and ODA are soluble in NMP, DMF, and DMAc but not in THF or CHCl3, whereas the polymer prepared from PMDA is soluble only in NMP. The water uptake value for these poly(ether imide) films is very low (0.2–0.5%), and exhibited low dielectric constants (2.81 at 1 MHz). The polymers exhibited high thermal stability up to 532 °C in air for 5% weight loss, and high glass transition temperatures up to 288 °C. The polymer exhibited high tensile strength up to 135 MPa, modulus 3.2 GPa, and elongation at break up to 25%, depending on the exact polymer structure.The structure of the poly(ether imide) synthesised from 4‐(p‐aminophenoxy)‐3‐trifluoromethyl‐4′‐aminobiphenyl and 2,2‐bis(3,4‐dicarboxyphenyl) hexafluoropropane. This polymer was soluble in many organic solvents.magnified imageThe structure of the poly(ether imide) synthesised from 4‐(p‐aminophenoxy)‐3‐trifluoromethyl‐4′‐aminobiphenyl and 2,2‐bis(3,4‐dicarboxyphenyl) hexafluoropropane. This polymer was soluble in many organic solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.