Micro Aerial Vehicles (MAVs) are being used in a wide range of applications such as surveillance, reconnaissance, inspection, and search and rescue. However, due to their size and mission profiles, they are prone to tipping over, jeopardizing their operation. Self-righting is an open challenge for fixed-wing drones since existing research focuses on terrestrial and multicopter flying robots with solutions that increase drag and structural weight. Until now, solutions for winged drones remained largely unexplored. Inspired by beetles, we propose a robust and elegant solution where we retrofit a fixed-wing drone with a set of additional wings akin to beetles shell structured wings called elytra. We show that artificial elytra provide additional lift during flight to mitigate their structural weight while also being able to self-right the MAV when it has been flipped over. We performed simulations along with dynamic and aerodynamic experiments to validate our results.
Intense winds are a challenge for vertical take‐off and landing drones with wings. In particular, in the hovering regime, wings are sensitive to wind currents that can be detrimental to their operational and energetic performances. Tail‐sitters are particularly prone to those wind currents because their wings are perpendicular to the incoming wind during hovering. This wind generates a large amount of drag and can displace and destabilize the vehicle, possibly leading to catastrophic failures. Herein, our morphing strategy demonstrates in a custom‐built 1.8 kg tail‐sitter with morphing wings that can actively resist winds and leverage them to increase its aerodynamic efficiency. It is shown that adaptive wing morphing during hovering in adverse wind conditions can reduce normalized energy consumption up to 85%, increase attitude and positional stability, and leverage wind energy to increase its yaw angular rate up to 200% while decreasing motor saturation levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.