High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted deep sequencing and array-based genomic hybridization. In total, 845/944 patients (89.5%) harbored at least one mutation (median, 3 per patient; range, 0–12). Forty-seven genes were significantly mutated with TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1 mutated in >10% of cases. Many mutations were associated with higher risk groups and/or blast elevation. Survival was investigated in 875 patients. By univariate analysis, 25/48 genes (resulting from 47 genes tested significantly plus PRPF8) affected survival (P<0.05). The status of 14 genes combined with conventional factors revealed a novel prognostic model (‘Model-1') separating patients into four risk groups (‘low', ‘intermediate', ‘high', ‘very high risk') with 3-year survival of 95.2, 69.3, 32.8, and 5.3% (P<0.001). Subsequently, a ‘gene-only model' (‘Model-2') was constructed based on 14 genes also yielding four significant risk groups (P<0.001). Both models were reproducible in the validation cohort (n=175 patients; P<0.001 each). Thus, large-scale genetic and molecular profiling of multiple target genes is invaluable for subclassification and prognostication in MDS patients.
We analyzed the mutational hotspot region of SRSF2 (Pro95) in 275 cases with chronic myelomonocytic leukemia (CMML). In addition, ASXL1, CBL, EZH2, JAK2V617F, KRAS, NRAS, RUNX1, and TET2 mutations were investigated in subcohorts. Mutations in SRSF2 (SRSF2mut) were detected in 47% (129 of 275) of all cases. In detail, 120 cases had a missense mutation at Pro95, leading to a change to Pro95His, Pro95Leu, Pro95Arg, Pro95Ala, or Pro95Thr. In 9 cases, 3 new in/del mutations were observed: 7 cases with a 24-bp deletion, 1 case with a 3-bp duplication, and 1 case with a 24-bp duplication. In silico analyses predicted a damaging character for the protein structure of SRSF2 for all mutations. SRSF2mut was correlated with higher age, less pronounced anemia, and normal karyotype. SRSF2mut and EZH2mut were mutually exclusive, but SRSF2mut was associated with TET2mut. In the total cohort, no effect of SRSF2mut on survival was observed. However, in the RUNX1mut subcohort, SRSF2 Pro95His had a favorable effect on overall survival. This comprehensive mutation analysis found that 93% of all patients with CMML carried at least 1 somatic mutation in 9 recurrently mutated genes. In conclusion, these data show the importance of SRSF2mut as new diagnostic marker in CMML. (Blood. 2012;120(15):3080-3088)
We analyzed a large cohort of 1160 untreated CLL patients for novel genetic markers (SF3B1, NOTCH1, FBXW7, MYD88, XPO1) in the context of molecular, immunophenotypic and cytogenetic data. NOTCH1 mutations (mut) (12.3%), SF3B1mut (9.0%) and TP53mut (7.1%) were more frequent than XPO1mut (3.4%), FBXW7mut (2.5%) and MYD88mut (1.5%). SF3B1mut, NOTCH1mut, TP53mut and XPO1mut were highly correlated to unmutated, whereas MYD88mut were associated with mutated IGHV status. Associations of diverse cytogenetic aberrations and mutations emerged: (1) SF3B1mut with del(11q), (2) NOTCH1mut and FBXW7mut with trisomy 12 and nearly exclusiveness of SF3B1mut, (3) MYD88mut with del(13q) sole and low frequencies of SF3B1mut, NOTCH1mut and FBXW7mut. In patients with normal karyotype only SF3B1mut were frequent, whereas NOTCH1mut rarely occurred. An adverse prognostic impact on time to treatment (TTT) and overall survival (OS) was observed for SF3B1mut, NOTCH1mut and TP53 disruption. In multivariate analyses SF3B1mut, IGHV mutational status and del(11q) were the only independent genetic markers for TTT, whereas for OS SF3B1mut, IGHV mutational status and TP53 disruption presented with significant impact. Finally, our data suggest that analysis of gene mutations refines the risk stratification of cytogenetic prognostic subgroups and confirms data of a recently proposed model integrating molecular and cytogenetic data.
The karyotype is so far the most important prognostic parameter in acute myeloid leukemia (AML). Molecular mutations have been analyzed to subdivide AML with normal karyotype into prognostic subsets. The aim of this study was to develop a prognostic model for the entire AML cohort solely based on molecular markers. One thousand patients with cytogenetic data were investigated for the following molecular alterations: PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11,
We investigated ten --eleven translocation 2 (TET2) mutations in acute myeloid leukemia (AML), their correlation with other gene mutations and prognostic value. By deep-sequencing, 131 somatic TET2 mutations were identified in 87/318 (27.4%) patients. Of 87 mutated cases, 44 (50.6%) carried two mutations. TET2 mutations were concomitantly observed with mutations in NPM1, FLT3-ITD, FLT3-TKD, JAK2, RUNX1, CEBPA, CBL and KRAS. However, TET2 mutations rarely concomitantly occurred with IDH1mut or IDH2mut (2/251 or 0/184; P ¼ 0.046 and P ¼ 0.003, respectively). TET2 mutations were associated with normal karyotype AML (CN-AML) (62/206 (30.1%) CN-AML vs 20/107 (18.7%) aberrant karyotype; P ¼ 0.031), higher white blood cell count (mean 65.3 vs 40.3 Â 10 9 /l, P ¼ 0.023), lower platelet count (mean 68.6 vs 92.4 Â 10 9 /l, P ¼ 0.03) and higher age (67.5 vs 65.2 years, Po0.001). Survival analyses were restricted to de novo CN-AML patients (n ¼ 165) and showed inferior event-free survival (EFS) of TET2 mutations compared with TET2wt (median: 6.7 vs 18.7 months, P ¼ 0.009). This negative effect of TET2 mutation on EFS was particularly observed in patients p65 years (median: 8.9 months vs not reached (n.r.), P ¼ 0.027) as well as in patients of the European LeukemiaNet favorable-risk subgroup, that is, patients harboring mutated CEBPA and/or mutated NPM1 without FLT3-ITD (median: 10.3 vs 41.3 months, P ¼ 0.048). These data support a role for TET2 as an important prognostic biomarker in AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.