The acute effects of parathyroid hormone (PTH) on fibroblast growth factor 23 (FGF23) in vivo are not well understood. After a single subcutaneous PTH (1-34) injection (50 nmol/kg) in mice, FGF23 levels were assessed in plasma using assays that measure either intact alone (iFGF23) or intact/C-terminal FGF23 (cFGF23). Furthermore, FGF23 messenger RNA (mRNA) and protein levels were assessed in bone. In addition, we examined the effects of PTH treatment on FGF23 production in vitro using differentiated calvarial osteocyte-like cells. cFGF23 levels increased by three- to fivefold within 2 hours following PTH injection, which returned to baseline by 4 hours. In contrast, iFGF23 levels remained unchanged for the first 2 hours, yet declined to ∼60% by 6 hours and remained suppressed before returning to baseline after 24 hours. Using homozygous mice for an autosomal dominant hypophosphatemic rickets-FGF23 mutation or animals treated with a furin inhibitor, we showed that cFGF23 and iFGF23 levels increased equivalently after PTH injection. These findings are consistent with increased FGF23 production in bone, yet rapid cleavage of the secreted intact protein. Using primary osteocyte-like cell cultures, we showed that PTH increased FGF23 mRNA expression through cyclic adenosine monophosphate/protein kinase A, but not inositol triphosphate/protein kinase C signaling; PTH also increased furin protein levels. In conclusion, PTH injection rapidly increases FGF23 production in bone in vivo and in vitro. However, iFGF23 is rapidly degraded. At later time points through an unidentified mechanism, a sustained decrease in FGF23 production occurs.
Cyclin-dependent kinases (CDKs) are frequently deregulated in cancer and represent promising drug targets. We provide evidence that CDK8 has a key role in B-ALL. Loss of CDK8 in leukemia mouse models significantly enhances disease latency and prevents disease maintenance. Loss of CDK8 is associated with pronounced transcriptional changes, whereas inhibiting CDK8 kinase activity has minimal effects. Gene set enrichment analysis suggests that the mTOR signaling pathway is deregulated in CDK8-deficient cells and, accordingly, these cells are highly sensitive to mTOR inhibitors. Analysis of large cohorts of human ALL and AML patients reveals a significant correlation between the level of CDK8 and of mTOR pathway members. We have synthesized a small molecule YKL-06-101 that combines mTOR inhibition and degradation of CDK8, and induces cell death in human leukemic cells. We propose that simultaneous CDK8 degradation and mTOR inhibition might represent a potential therapeutic strategy for the treatment of ALL patients.
The transcription factors STAT5A and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.