Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host's capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.
We and others have shown that HIV-1 highly-exposed seronegative (HESN) female commercial sex workers (CSWs) maintain low genital inflammatory conditions to prevent HIV infection. HIV-1 interacts with toll-like receptors (TLR)-7/8 to induce interferon (IFN)-α, an important antiviral and immunomodulatory cytokine, which act together with interleukin (IL)-10, human leukocyte antigen (HLA)-G and immunoglobulin-like transcript (ILT)-4 to initiate a “tolerogenic/regulatory” anti-inflammatory loop. In view of further unravelling elements associated with natural immunity to HIV-1, we have characterised TLR-7, IFN-α, IL-10, HLA-G and ILT-4 expression profiles in the genital tract of female CSWs and HIV-1-uninfected non-CSWs from Benin. Endocervical myeloid HLA-DR+ cells from HESN CSWs expressed higher levels of IFN-α, TLR-7, IL-10 and HLA-G than those from both HIV-1-infected CSWs and HIV-1-uninfected non-CSWs. Further characterization of the endocervical myeloid HLA-DR+ cells in HESN CSWs revealed a population of “tolerogenic” CD103+ CD14+ CD11c+ myeloid cells expressing high levels of IFN-α and IL-10. Concomitantly, HESN CSWs had higher frequencies of endocervical regulatory CD4+ T-cells when compared to those from the two other groups of women. These novel findings provide strong evidence to support the implication of tolerogenic myeloid cells expressing high levels of antiviral molecules in shaping the genital mucosal immune response to prevent HIV infection.
BackgroundMost HIV infections are transmitted across mucosal epithelium. Understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, are of fundamental importance. HLA-G is a powerful modulator of the immune response. The aim of this study was to investigate whether soluble HLA-G (sHLA-G) expression in the female genital tract is associated with HIV-1 infection.Methods and FindingsGenital levels of sHLA-G were determined in 52 HIV-1-uninfected and 44 antiretroviral naïve HIV-1-infected female commercial sex workers (CSWs), as well as 71 HIV-1-uninfected non-CSW women at low risk of exposure, recruited in Cotonou, Benin. HIV-1-infected CSWs had higher genital levels of sHLA-G compared with those in both the HIV-1-uninfected CSW (P = 0.009) and non-CSW groups (P = 0.0006). The presence of bacterial vaginosis (P = 0.008), and HLA-G*01:01:02 genotype (P = 0.002) were associated with higher genital levels of sHLA-G in the HIV-1-infected CSWs, whereas the HLA-G*01:04:04 genotype was also associated with higher genital level of sHLA-G in the overall population (P = 0.038). When adjustment was made for all significant variables, the increased expression of sHLA-G in the genital mucosa remained significantly associated with both HIV-1 infection (P = 0.02) and bacterial vaginosis (P = 0.03).ConclusionThis study demonstrates that high level of sHLA-G in the genital mucosa is independently associated with both HIV-1 infection and bacterial vaginosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.