The functional consequences of alternative splicing on altering the transcription rate have been the subject of intensive study in mammalian cells but less is known about effects of splicing on changing the transcription rate in yeast. We present several lines of evidence showing that slow RNA polymerase II elongation increases both cotranscriptional splicing and splicing efficiency and that faster elongation reduces cotranscriptional splicing and splicing efficiency in budding yeast, suggesting that splicing is more efficient when cotranscriptional. Moreover, we demonstrate that altering the RNA polymerase II elongation rate in either direction compromises splicing fidelity, and we reveal that splicing fidelity depends largely on intron length together with secondary structure and splice site score. These effects are notably stronger for the highly expressed ribosomal protein coding transcripts. We propose that transcription by RNA polymerase II is tuned to optimize the efficiency and accuracy of ribosomal protein gene expression, while allowing flexibility in splice site choice with the nonribosomal protein transcripts.[Supplemental material is available for this article.]Splicing is the process of removing introns from precursor messenger RNAs (pre-mRNAs) and joining adjacent exons to produce spliced mRNA. The excised intron, in the form of a branched lariat, is rapidly debranched and discarded. If genes contain multiple introns, alternative splicing pathways can give rise to distinct mRNA and protein isoforms by using alternative splice sites or by including or excluding particular exons. In human cells, ∼95% of transcripts are alternatively spliced, thereby greatly expanding the coding capacity of the genome (Kornblihtt et al. 2013). Moreover, alternative splicing events that introduce translational stop codons in mRNAs are generally coupled with nonsensemediated decay (NMD) to down-regulate that spliced isoform, offering an additional layer of gene expression regulation (Lewis et al. 2003;Sayani et al. 2008;Kawashima et al. 2014). In Saccharomyces cerevisiae (budding yeast) only ∼5% of genes contain an intron, although they produce ∼27% of total mRNA, because many intron-containing genes are highly expressed (Ares et al. 1999). There is extensive evidence that in both metazoans and budding yeast, the process of splicing occurs as soon as the intron is transcribed and before transcription termination, that is, cotranscriptionally (Alexander et al. 2010b;Ameur et al. 2011;Carrillo Oesterreich et al. 2016). As a result of splicing being cotranscriptional, RNA polymerase II (RNAPII) elongation rate can influence splicing. According to one model, referred to as the "kinetic coupling" model, variations in RNAPII elongation rate can alter the time available, or the "window of opportunity" for upstream splice sites to be recognized before competing downstream splice sites are produced (Roberts et al. 1998;de la Mata et al. 2003;Kornblihtt 2007;Naftelberg et al. 2015;Saldi et al. 2016). Consistent with this model, ...
In this study, we have investigated the global impact of heterogeneous nuclear Ribonuclear Protein (hnRNP) H/F-mediated regulation of splicing events and gene expression in oligodendrocytes. We have performed a genome-wide transcriptomic analysis at the gene and exon levels in Oli-neu cells treated with siRNA that targets hnRNPH/F compared to untreated cells using Affymetrix Exon Array. Gene expression levels and regulated exons were identified with the GenoSplice EASANA algorithm. Bioinformatics analyses were performed to determine the structural properties of G tracts that correlate with the function of hnRNPH/F as enhancers vs. repressors of exon inclusion. Different types of alternatively spliced events are regulated by hnRNPH/F. Intronic G tracts density, length and proximity to the 5′ splice site correlate with the hnRNPH/F enhancer function. Additionally, 6% of genes are differently expressed upon knock down of hnRNPH/F. Genes that regulate the transition of oligodendrocyte progenitor cells to oligodendrocytes are differentially expressed in hnRNPH/F depleted Oli-neu cells, resulting in a decrease of negative regulators and an increase of differentiation-inducing regulators. The changes were confirmed in developing oligodendrocytes in vivo. This is the first genome wide analysis of splicing events and gene expression regulated by hnRNPH/F in oligodendrocytes and the first report that hnRNPH/F regulate genes that are involved in the transition from oligodendrocyte progenitor cells to oligodendrocytes.
The auxin‐inducible degron (AID) is a useful technique to rapidly deplete proteins of interest in nonplant eukaryotes. Depletion is achieved by addition of the plant hormone auxin to the cell culture, which allows the auxin‐binding receptor, TIR1, to target the AID‐tagged protein for degradation by the proteasome. Fast depletion of the target protein requires good expression of TIR1 protein, but as we show here, high levels of TIR1 may cause uncontrolled depletion of the target protein in the absence of auxin. To enable conditional expression of TIR1 to a high level when required, we regulated the expression of TIR1 using the β‐estradiol expression system. This is a fast‐acting gene induction system that does not cause secondary effects on yeast cell metabolism. We demonstrate that combining the AID and β‐estradiol systems results in a tightly controlled and fast auxin‐induced depletion of nuclear target proteins. Moreover, we show that depletion rate can be tuned by modulating the duration of β‐estradiol preincubation. We conclude that TIR1 protein is a rate‐limiting factor for target protein depletion in yeast, and we provide new tools that allow tightly controlled, tuneable, and efficient depletion of essential proteins whereas minimising secondary effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.