The image intensity surface in an ideal fingerprint image contains a limited range of spatial frequencies, and mutually distinct textures differ significantly in their dominant frequencies. This paper presents a multiresolution feature based subspace technique for fingerprint recognition. The technique computes the core point of fingerprint and crops the image to predefined size. The multiresolution features of aligned fingerprint are computed using 2-D discrete wavelet transform. LL component in wavelet decomposition is concatenated to form the fingerprint feature. Principal component analysis is performed on these features to extract the features with reduced dimensionality. The algorithm is effective and efficient in extracting the features. It is also robust to noise. Experimental results using the FVC2002 and Bologna databases show the feasibility of the proposed method..
Various changes in illumination, expression, viewpoint, and plane rotation present challenges to face recognition. Low dimensional feature representation with enhanced discrimination power is of paramount importance to face recognition system. This chapter presents transform based techniques for extraction of efficient and effective features to solve some of the challenges in face recognition. The techniques are based on the combination of Radon transform, Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT). The property of Radon transform to enhance the low frequency components, which are useful for face recognition, has been exploited to derive the effective facial features. The comparative study of various transform based techniques under different conditions like varying illumination, changing facial expressions, and in-plane rotation is presented in this chapter. The experimental results using FERET, ORL, and Yale databases are also presented in the chapter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.