The Arabidopsis-type telomeric repeats (5'-TTTAGGG-3) are highly conserved. In most families of different plant phyla they represent the basic sequence of telomeres that stabilize and protect the chromosome termini. The results presented here show that Alliaceae and some related liliaceous species have no tandemly repeated TTTAGGG sequences. Instead, their chromosomes reveal highly repetitive satellite and/or rDNA sequences at the very ends. These apparently substitute the original plant telomeric sequences in Alliaceae. Both sequence types are very active in homologous recombination and may contribute to the stabilization of chromosome termini via compensation of replication-mediated shortening.
The genomic organization and diversity of the Ty1-copia group retrotransposons has been investigated in a monocotyledonous plant, Allium cepa. We used the polymerase chain reaction (PCR) to generate sequences corresponding to a conserved domain of the reverse transcriptase gene of Ty1-copia retrotransposons in this plant. Sequence analysis of 27 of these PCR products shows that they are a highly heterogeneous population, a feature which is common in plants but not in yeast and Drosophila. Slot-blot analysis shows there are 100,000-200,000 copies of Ty1-copia group retrotransposons within the A. cepa genome (2C = 31.7 pg), indicating that they are a significant component of the genome of this plant. In situ hybridization to metaphase chromosomes reveals that Ty1-copia retrotransposons are distributed throughout the euchromatin of all chromosomes of A. cepa but are enriched in the terminal heterochromatic regions, which contain tandem arrays of satellite sequences. This is the first clear evidence for the presence of Ty1-copia retrotransposons in the terminal heterochromatin of plants and contrasts with the distribution of these elements in other plant species.
Chromosomes from reconstructed field bean (Vicia faba L.) karyotypes were flow-sorted and the DNA was used for the physical localization of seed storage and nonstorage (USP) protein genes using PCR with sequence specific primers. The data were confirmed and refined by using DNA of microisolated chromosomes of other karyotypes as the target for PCR. The specificity of the PCR products was proved by restrictase digestion into fragments of predicted length or by reamplification using 'nested' primers. The genes are located within defined regions of chromosome I (USP = unknown seed protein genes), II (vicilin genes, legumin B3 genes), III (legumin B4 genes), IV (pseudogenes psi 1) and V (legumin A genes and pseudogenes psi 1). Except for the pseudogene derived from the sequence of legumin B4 gene, all members of each gene family are located in one chromosome region exclusively. This approach proved to be useful for localizing genes that cannot be mapped genetically (due to the lack of allelic variants) and might be applied to integrate physical and genetic maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.