The distal enhancer region of the human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR) is known to be essential for HIV replication and to contain immediately adjacent E-box and Ets binding sites. Based on a yeast one-hybrid screen we have identified the E-box binding protein USF-1 as a direct interaction partner of Ets-1 and found that the complex acts on this enhancer element. The binding surfaces of USF-1 and Ets-1 map to their DNA-binding domains and although these domains are highly conserved, the interaction is very selective within the respective protein family. USF-1 and Ets-1 synergize in specific DNA binding as well as in the transactivation of reporter constructs containing the enhancer element, and mutations of the individual binding sites dramatically reduce reporter activity in T cells. In addition, a dominant negative Ets-1 mutant inhibits both USF-1-mediated transactivation and the activity of the HIV-1 LTR in T cells. The inhibition is independent of Ets DNA-binding sites but requires the Ets binding surface on USF-1, highlighting the importance of the direct protein-protein interaction. Together these results indicate that the interaction between Ets-1 and USF-1 is required for full transcriptional activity of the HIV-1 LTR in T cells.
Simple procedures for the anaerobic preparation of photoactive and stable P840 reaction centers from Chlorobium tepidum and Chlorobium limicola in good yield are presented and quantitated. The subunit composition was tested by cosedimentation in sucrose density gradients. For C. limicola, it minimally comprises four subunits: the P840 reaction center protein PscA, the BChla antenna protein FMO, the FeS protein PscB with centers A and B, and a positively charged 17-kDa protein denoted PscD. The preparation from Chlorobium tepidum additionally contained PscC, a cytochrome c-551. The BChla absorption peak of the purified complexes was at 810 nm, with a shoulder at 835 nm. The ratio of the shoulder to the peak was 0.25, which corresponds to 1 reaction center per 70 BChla molecules if a uniform extinction coefficient of BChla is assumed. However, bleaching at 610 nm in continuous light corresponded up to 1 photoactive reaction center per 50 BChla molecules. Therefore, either the extinction coefficient of BChla in the reaction center is overestimated or the one for photobleaching is underestimated. In any case, the major portion of the reaction center was photoactive in the preparations. A P840 reaction center subcomplex, lacking PscD and deficient in FMO and PscB, but retaining the cytochrome c subunit, was obtained as a side product. It was photoinactive and had an absorption peak at 814 nm and a 835/814 absorbance ratio of 0.42. FMO and PscB show the tendency to form a complementary subcomplex. FMO and PscD are apparently required to stabilize the photoactive reaction center, while the cytochrome c subunit is not.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.