This cross-sectional study evaluated the relationship between ) functional and structural measurements of neurodegeneration in the initial stages of diabetic retinopathy (DR) and) the presence of neurodegeneration and early microvascular impairment. We analyzed baseline data of 449 patients with type 2 diabetes enrolled in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) study (NCT01726075). Functional studies by multifocal electroretinography (mfERG) evaluated neurodysfunction, and structural measurements using spectral domain optical coherence tomography (SD-OCT) evaluated neurodegeneration. The mfERG P1 amplitude was more sensitive than the P1 implicit time and was lower in patients with Early Treatment of Diabetic Retinopathy Study (ETDRS) level 20-35 than in patients with ETDRS level <20 ( = 0.005). In 58% of patients, mfERG abnormalities were present in the absence of visible retinopathy. Correspondence between SD-OCT thinning and mfERG abnormalities was shown in 67% of the eyes with ETDRS <20 and in 83% of the eyes with ETDRS level 20-35. Notably, 32% of patients with ETDRS 20-35 presented no abnormalities in mfERG or SD-OCT. We conclude that there is a link between mfERG and SD-OCT measurements that increases with the presence of microvascular impairment. However, a significant proportion of patients in our particular study population (ETDRS ≤35) had normal ganglion cell-inner plexiform layer thickness and normal mfERG findings. We raise the hypothesis that neurodegeneration may play a role in the pathogenesis of DR in many but not in all patients with type 2 diabetes.
Diabetic neuropathy, nephropathy, and retinopathy cause significant morbidity in patients with type 1 diabetes, even though improvements in treatment modalities delay the appearance and reduce the severity of these complications. To prevent or further delay the onset, it is necessary to better understand common underlying pathogenesis and to discover preclinical biomarkers of these complications. Retinal vessel calibers have been associated with the presence of microvascular complications, but their long-term predictive value has only been sparsely investigated. We examined retinal vessel calibers as 16-year predictors of diabetic nephropathy, neuropathy, and proliferative retinopathy in a young population-based Danish cohort with type 1 diabetes. We used semiautomated computer software to analyze vessel diameters on baseline retinal photos. Calibers of all vessels coursing through a zone 0.5-1 disc diameter from the disc margin were measured and summarized as the central artery and vein equivalents. In multiple regression analyses, we found wider venular diameters and smaller arteriolar diameters were both predictive of the 16-year development of nephropathy, neuropathy, and proliferative retinopathy. Early retinal vessel caliber changes are seemingly early markers of microvascular processes, precede the development of microvascular complications, and are a potential noninvasive predictive test on future risk of diabetic retinopathy, neuropathy, and nephropathy.Diabetic microvascular complications, namely diabetic peripheral neuropathy (DPN), diabetic nephropathy (DN), and diabetic retinopathy (DR), are common in type 1 diabetes (1) despite advances in metabolic care. Identifying new predictors of microvascular disease could be helpful for early individual risk stratification, which may provide better opportunity for timely implementation of effective interventions. For this purpose, the retinal vasculature provides a unique opportunity to assess vascular health directly and noninvasively in vivo.Studies have investigated how retinal vessel calibers are associated with microvascular complications in both type 1 and type 2 diabetes (2-14). The evidence to date suggests that wider retinal venular diameters are associated with presence of both DN and severe levels of DR in several cross-sectional studies (3,(8)(9)(10) and with incident DN (4,5) and progression to severe
Clinical trial reg. no. NCT01726075, clinicaltrials.gov This article contains Supplementary Data online at http://diabetes .diabetesjournals.org/lookup/suppl/
Aims/hypothesis Fractal analysis of the retinal vasculature provides a global measure of the complexity and density of retinal vessels summarised as a single variable: the fractal dimension. We investigated fractal dimensions as long-term predictors of microvasculopathy in type 1 diabetes. Methods We included 180 patients with type 1 diabetes in a 16 year follow-up study. In baseline retinal photographs (from 1995), all vessels in a zone 0.5-2.0 disc diameters from the disc margin were traced using Singapore Institute Vessel Assessment-Fractal image analysis software. Artefacts were removed by a certified grader, and fractal dimensions were calculated using the box-counting method. At follow-up (in 2011), diabetic neuropathy, nephropathy and proliferative retinopathy were assessed and related to baseline fractal dimensions in multiple regressions adjusted for sex and baseline age, diabetes duration, HbA 1c , BP, BMI, vibration perception threshold, albuminuria, retinopathy and vessel diameters. Results Mean baseline age and diabetes duration were 21.0 and 13.4 years, respectively, and of patients 50.0% were males. The mean fractal dimension was 1.3817. The 16 year incidences of neuropathy, nephropathy and proliferative retinopathy were 10.8%, 8.0% and 27.9%, respectively. Multiple regression analyses showed a lower fractal dimension to significantly predict incident neuropathy (OR 1.17 per 0.01 fractal dimension decrease [95% CI 1.01, 1.36]), nephropathy (OR 1.40 per 0.01 fractal dimension decrease [95% CI 1.10, 1.79]) and proliferative retinopathy (OR 1.22 per 0.01 fractal dimension decrease [95% CI 1.09, 1.37]). Conclusions/interpretation The retinal vascular fractal dimension is a shared biomarker of diabetic microvasculopathy, thus indicating a possible common pathogenic pathway. Retinal fractal analysis therefore is a potential tool for risk stratification in type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.